Have a personal or library account? Click to login
The magnitude of external fall-inducing forces in subjects using the DreamMotion exoskeleton prototype in static body positions – a pilot study Cover

The magnitude of external fall-inducing forces in subjects using the DreamMotion exoskeleton prototype in static body positions – a pilot study

Open Access
|Aug 2025

References

  1. Asada M., Encyclopedia of information systems, Elsevier, Bakersfield, California, United States, 2003.
  2. Novak I., Mcintyre S., Morgan C., Campbell L., Dark L., Morton N. et al., A systematic review of interventions for children with cerebral palsy: State of the evidence, Dev. Med. Child Neurol., 2013, 55 (10), 885–910.
  3. Novak I., Morgan C., Fahey M., Finch-Edmondson M., Galea C., Hines A. et al., State of the Evidence Traffic Lights 2019: Systematic Review of Interventions for Preventing and Treating Children with Cerebral Palsy, Curr. Neurol. Neurosci. Rep., 2020, 20 (2), Vol. 20, 3.
  4. Coenen P., Van Werven G., Van Nunen M.P.M., Van Dieën J.H., Gerrits K.H.L., Janssen T.W.J., Robot-assisted walking vs. overground walking in stroke patients: An evaluation of muscle activity, J. Rehabil. Med., 2012, 44 (4), 331–337.
  5. Chen B., Zi B., Qin L., Pan Q., State-of-the-art research in robotic hip exoskeletons: A general review, J. Orthop. Translat., 2020, 20, 4–13.
  6. Malcolm P., Derave W., Galle S., De Clercq D., A Simple Exoskeleton That Assists Plantarflexion Can Reduce the Metabolic Cost of Human Walking, PLoS One, 2013, 8 (2), 1–7.
  7. Kazerooni H., Steger R., Huang L., Hybrid control of the Berkeley Lower Extremity Exoskeleton (BLEEX), Int. J. Rob. Res., 2006,25 (5–6), 561–573.
  8. Hamza M.F., Ghazilla R.A.R., Muhammad B.B., Yap H.J., Balance and stability issues in lower extremity exoskeletons: A systematic review, Biocybern. Biomed. Eng., 2020, 40 (4), 1666–1679.
  9. Sam R.Y., Lau Y.F.P., Lau Y., Lau S.T., Types, functions and mechanisms of robot-assisted intervention for fall prevention: A systematic scoping review, Arch. Gerontol. Geriatr., 2023, 115, 105117.
  10. Riek L.D., Healthcare robotics, Commun. ACM, 2017, 60 (11), 68–78.
  11. Rajagopalan R., Litvan I., Jung T.P., Fall prediction and prevention systems: Recent trends, challenges, and future research directions, Sensors, 2017, 17 (11), 1–17.
  12. Beck O.N., Shepherd M.K., Rastogi R., Martino G., Ting L.H., Sawicki G.S., Exoskeletons need to react faster than physiological responses to improve standing balance, Sci. Robot., 2023, 8 (75), 1–23.
  13. Luo S., Jiang M., Zhang S., Zhu J., Yu S., Silva D. et al., Experiment-free exoskeleton assistance via learning in simulation, Nature, 2024, 630 (8016), 353–359.
  14. Yang W., Zhang J., Zhang S., Yang C., Lower Limb Exoskeleton Gait Planning Based on Crutch and Human-Machine Foot Combined Center of Pressure, Sensors (Basel), 2020, 20 (24), 7216.
  15. Verrusio W., Gianturco V., Cacciafesta M., Marigliano V., Troisi G., Ripani M., Fall prevention in the young old using an exoskeleton human body posturizer: a randomized controlled trial, Aging Clin. Exp. Res., 2017, 29 (2), 207–214.
  16. Gorgey A.S., Robotic exoskeletons: The current pros and cons, World J. Orthop., 2018, 9 (9), 112–119.
  17. van Dijsseldonk R.B., van Nes I.J.W., Geurts A.C.H., Keijsers N.L.W., Exoskeleton home and community use in people with complete spinal cord injury, Sci. Rep., 2020, 10 (1), 15600.
  18. Contreras-Vidal L., Prasad S., Kilicarslan A., Bhagat N., Methods for closed-loop neural-machine interface systems for the control of wearable exoskeletons and prosthetic devices, U.S. Patent Application 14/323,320. Jan. 8, 2015.
  19. Goffer A., Gait-locomotor apparatus, U.S. Patent 7,153,242. Dec. 26, 2006.
  20. Kazerooni H., Amundson K., Harding N., Exoskeleton and method for controlling a swing leg of the exoskeleton, U.S. Patent 8,801,641, Aug. 12, 2014.
  21. Goldfarb M., Farris R.J., Quintero H.A., Movement assistance devices, U.S. Patent 9,682,006. Jun. 20, 2017.
  22. Khalili M., Borisoff J.F., van der Loos H.F.M., Developing safe fall strategies for lower limb exoskeletons, IEEE Int. Conf. Rehabil. Robot., 2017, 314–319.
  23. Crea S., Beckerle P., de Looze M., de Pauv K., Grazi L., Kermavnar T. et al., Occupational exoskeletons: A roadmap toward large-scale adoption. Methodology and challenges of bringing exoskeletons to workplaces, Wearable Technol., 2021, 2, e11.
  24. Mahdian Z.S., Wang H., Refai M.I.M., Durandau G., Sartori M., MacLean M.K., Tapping into skeletal muscle biomechanics for design and control of lower limb exoskeletons: A narrative review, J. Appl. Biomech., 2023, 39 (5), 318–333.
  25. Hof A.L., Gazendam M.G.J., Sinke W.E., The condition for dynamic stability, J. Biomech., 2005, 38 (1), 1–8.
  26. Al-Shuka H.F.N., Corves B., Zhu W.H., Vanderborght B., Multi-level control of zero-moment point-based humanoid biped robots: A review, Robotica, 2016, 34 (11), 2440–2466.
  27. Zhang T., Tran M., Huang H.S., Design and experimental verification of hip exoskeleton with balance capacities for walking assistance, IEEE/ASME Trans. Mechatron., 2018, 23 (1), 274–285.
  28. Ramanujam A., Momeni K., Ravi M., Augustine J., Garbarini E., Barrance P. et al., Dynamic Margins of Stability During Robot-Assisted Walking in Able-Bodied Individuals: A Preliminary Study, Front. Robot. AI., 2020, 7 (December), 1–11.
  29. Nakagawa S., Hasegawa Y., Fukuda T., Kondo I., Tanimoto M., Di P. et al., Tandem Stance Avoidance Using Adaptive and Asymmetric Admittance Control for Fall Prevention, IEEE Trans Neural Syst, Rehabil, Eng., 2016, 24 (5), 542–550.
  30. Wang Y., Srinivasan M., Stepping in the direction of the fall: The next foot placement can be predicted from current upper body state in steady-state walking, Biol. Lett., 2014, 10 (9), 1–5.
  31. Park J., Kim S., Nussbaum M., Srinivasan D., Effects of back-support exoskeleton use on gait performance and stability during level walking, Gait Posture, 2022, 92, 181–190 (92), 181–190.
  32. Tan K., Koyama S., Sakurai H., Kanada Y., Tanabe S., Changes in Distance between a Wearable Robotic Exoskeleton User and Four-Wheeled Walker during Gait in Level and Slope Conditions: Implications for Fall Prevention Systems, Biomimetics, 2023, 8 (2).
  33. Shin E., Jeon B., Song B., Baek M., Roh H., Analysis of walker-aided walking by the healthy elderly with a walker pocket of different weights attached at different locations, J. Phys. Ther. Sci., 2015, 27 (11), 3369–3371.
  34. Rupal B.S., Rafique S., Singla A., Singla E., Isaksson M., Virk G.S., Lower-limb exoskeletons: Research trends and regulatory guidelines in medical and non-medical applications, Int. J. Adv. Robot Syst., 2017, 14 (6), 1–27.
DOI: https://doi.org/10.37190/abb/204782 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 15 - 25
Submitted on: Feb 19, 2025
Accepted on: May 7, 2025
Published on: Aug 26, 2025
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Piotr Woźniak, Rafał Gnat, Anna Gogola, Katarzyna Fedejko-Kaflowska, Łukasz Rydzik, Tadeusz Ambroży, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.