Have a personal or library account? Click to login
Comparative analysis of orthopaedic scaffold fixation methods – a finite element study Cover

Comparative analysis of orthopaedic scaffold fixation methods – a finite element study

By: Anita Gryko and  Piotr Prochor  
Open Access
|Mar 2025

References

  1. Alkhatib S.E., Mehboob H., Tarlochan F., Finite element analysis of porous titanium alloy hip stem to evaluate the biomechanical performance during walking and stair climbing, J. Bionic. Eng., 2019, 16, 1103–1115, DOI: 10.1007/s42235-019-0122-4.
  2. Andreaus U.A., Colloca M., Toscano A., Mechanical behaviour of a prosthesized human femur: a comparative analysis between walking and stair climbing by using the finite element method, Biophysics and Bioengineering Letters, 2008, 1 (3).
  3. Antonowicz M., Brzezińska K., Walke W., Taratuta A., Pawlik M., Biodegradable scaffolds for bone defect treatment, Acta Bioeng. Biomech., 2023, 25 (3), 1–14, DOI: 10.37190/ABB-02318-2023-03.
  4. Behrens B.A., Nolte I., Wefstaedt P., Stukenborg-Colsman C., Bouguecha A., Numerical investigations on the strain-adaptive bone remodelling in the periprosthetic femur: influence of the boundary conditions, Biomed. Eng. Online, 2009, 8, 1–9, DOI: 10.1186/1475-925X-8-7.
  5. Bigham A., Aghajanian A.H., Saudi A., Rafienia M., Hierarchical porous Mg2SiO4-CoFe2O4 nanomagnetic scaffold for bone cancer therapy and regeneration: surface modification and in vitro studies, Mater Sci. Eng. C., 2020, 109, 110579, DOI: 10.1016/j.msec.2019.110579.
  6. Calvo-Gallego J.L., Gutiérrez-Millán F., Ojeda J., Pérez M.Á., Martínez-Reina J., The correlation between bone density and mechanical variables in bone remodelling models: Insights from a case study corresponding to the femur of a healthy adult, Mathematics, 2022, 10 (18), 3367, DOI: 10.3390/math10183367.
  7. Capitanu L., Florescu V., Badita L.L., New concept in durability improvement of hip total joint endoprostheses, Acta Bioeng. Biomech., 2014, 16 (1), 75–82, DOI: 10.5277/abb140110.
  8. Chabarova O., Selivonec J., Virtual modelling the impact of torsional loading on osteoporotic vertebrae buckling, Acta Bioeng. Biomech., 2024, 26 (1), 1–10, DOI: 10.37190/ABB-02392-2024-03.
  9. Chaudhari A.A., Vig K., Baganizi D.R., Sahu R., Dixit S., Dennis V., Singh S.R., Pillai S.R., Future prospects for scaffolding methods and biomaterials in skin tissue engineering: a review, Int. J. Mol. Sci., 2016, 17 (12), 1974, DOI: 10.3390/ijms17121974.
  10. Coquim J., Clemenzi J., Salahi M., Sherif A., Tavakkoli Avval P., Shah S., Schemitsch E.H., Bagheri Z.S., Bougherara H., Zdero R., Biomechanical analysis using FEA and experiments of metal plate and bone strut repair of a femur midshaft segmental defect, Biomed. Res. Int., 2018, (1), 4650308, DOI: 10.1155/2018/4650308.
  11. Fox M.J., Scarvell J.M., Smith P.N., Kalyanasundaram S., Stachurski Z.H., Lateral drill holes decrease strength of the femur: an observational study using finite element and experimental analyses, J. Orthop. Surg. Res., 2013, 8, 1–8, DOI: 10.1186/1749-799X-8-29.
  12. Fu Q., Saiz E., Rahaman M.N., Tomsia A.P., Toward strong and tough glass and ceramic scaffolds for bone repair, Adv. Funct. Mater., 2013, 23 (44), 5461–5476, DOI: 10.1002/adfm.201301121.
  13. Gao S.S., Zhang Y.R., Zhu Z.L., Yu H.Y., Micromotions and combined damages at the dental implant/bone interface, Int. J. Oral. Sci., 2012, 4 (4), 182–188, DOI: 10.1038/ijos.2012.68.
  14. Gao Y., Chai W., Wang L., Wang M., Jin Z., Effect of friction and clearance on kinematics and contact mechanics of dual mobility hip implant, Proc. Inst. Mech. Eng. Part H: J. Eng. Med., 2016, 230 (1), 39–49, DOI: 10.1177/0954411915617198.
  15. Goldsztajn K., Godzierz M., Hercog A., Władowski M., Jaworska J., Jelonek K., Woźniak A., Kajzer W., Orłowska A., Szewczenko J., Properties of biodegradable polymer coatings with hydroxyapatite on a titanium alloy substrate, Acta Bioeng. Biomech., 2024, 26 (1), 1–2, DOI: 10.37190/ABB-02351-2023-03.
  16. Gorguluarslan R.M., Gandhi U.N., Song Y., Choi S.K., An improved lattice structure design optimization framework considering additive manufacturing constraints, Rapid Prototyp J., 2017, 23 (2), 305–319, DOI: 10.1108/RPJ-10-2015-0139.
  17. Gryko A., Prochor P., Numerical evaluation of scaffolds as a method to restore continuity of a long bone, J. Comput. Sci., 2024, 79, 102314, DOI: 10.1016/j.jocs.2024.102314.
  18. Gryko A., Prochor P., Sajewicz E., Finite element analysis of the influence of porosity and pore geometry on mechanical properties of orthopaedic scaffolds, J. Mech. Behav. Biomed. Mater., 2022, 132, 105275, DOI: 10.1016/j.jmbbm.2022.105275.
  19. Han J., Wu J., Xiang X., Xie L., Chen R., Li L., Ma K., Sun Q., Yang R., Huang T., Tong L., Zhu L., Wang H., Wen C., Zhao Y., Wang J., Biodegradable BBG/PCL composite scaffolds fabricated by selective laser sintering for directed regeneration of critical-sized bone defects, Mater. Des., 2023, 225, 111543, DOI: 10.1016/j.matdes.2022.111543.
  20. Hata K., Ishido Y., Fukudome K., Kiyama R., Kawada M., Nishi T., Nakatsuji S., Yone K., Effect of alteration in hip joint alignment following total hip arthroplasty on hip joint contact force during gait, Acta Bioeng. Biomech., 2023, 25 (3), 1–10, DOI: 10.37190/ABB-02284-2023-02.
  21. Heinecke M., Layher F., Matziolis G., Anchoring of a kinked uncemented femoral stem after preparation with a straight or a kinked reamer, Orthop. Surg., 2019, 11 (4), 705–711, DOI: 10.1111/os.12490.
  22. Herrera A., Panisello J.J., Ibarz E., Cegoñino J., Puértolas J.A., Gracia L., Long-term study of bone remodelling after femoral stem: a comparison between dexa and finite element simulation, J. Biomech., 2007, 40 (16), 3615–3625, DOI: 10.1016/j.jbiomech.2007.06.008.
  23. Joshi M.G., Advani S.G., Miller F., Santare M.H., Analysis of a femoral hip prosthesis designed to reduce stress shielding, J. Biomech., 2000, 33 (12), 1655–1662, DOI: 10.1016/s0021 -9290(00)00110-x.
  24. Kuffner B.H.B., Capellato P., Ribeiro L.M.S., Sachs D., Silva G., Production and characterization of a 316L stainless steel/β-TCP biocomposite using the functionally graded materials (fgms) technique for dental and Orthopedic Applications, Metals, 2021, 11 (12), 1923, DOI: 10.3390/met11121923.
  25. Li J., Sun Z., Wei X., Tan Q., He X., Effect of Structure on Osteogenesis of Bone Scaffold: Simulation Analysis Based on Mechanobiology and Animal Experiment Verification, Bioeng., 2024, 11 (11), 1120, DOI: 10.3390/bioengineering11111120.
  26. Liu B., Hou G., Yang Z., Li X., Zheng Y., Wen P., Liu Z., Zhou F., Tian Y., Repair of critical diaphyseal defects of lower limbs by 3D printed porous Ti6Al4V scaffolds without additional bone grafting: a prospective clinical study, J. Mater. Sci.: Mater. Med., 2022, 33 (9), 64, DOI: 10.1007/s10856-022-06685-0.
  27. Lu J., Wang Q.Y., Sheng J.G., Guo S.C., Tao S.C., A 3D-printed, personalized, biomechanics-specific beta-tricalcium phosphate bioceramic rod system: personalized treatment strategy for patients with femoral shaft non-union based on finite element analysis, BMC Musculoskelet. Disord., 2020, 21, 1–9, DOI: 10.1186/s12891-020-03465-1.
  28. Luo C., Wu X.D., Wan Y., Liao J., Cheng Q., Tian M., Bai Z., Huang W., Femoral stress changes after total hip arthroplasty with the ribbed prosthesis: a finite element analysis, Biomed. Res. Int., 2020, 2020 (1), 6783936, DOI: 10.1155/2020/6783936.
  29. Majumder S., Gupta A., Das A., Barui A., Das M., Chowdhury A.R., Comparing the bone regeneration potential between a trabecular bone and a porous scaffold through osteoblast migration and differentiation: a multiscale approach, Int. J. Numer. Method. Biomed. Eng., 2024, e3821, DOI: 10.1002/cnm.3821.
  30. Marsell R., Einhorn T.A., The biology of fracture healing, Injury, 2011, 42 (6), 551–555, DOI: 10.1016/j.injury.2011. 03.031.
  31. Mini D., Reynolds K.J., Taylor M., Assessing screw length impact on bone strain in proximal humerus fracture fixation via surrogate modelling, Int. J. Numer. Method. Biomed. Eng., 2024, e3840, DOI: 10.1002/cnm.3840.
  32. Mukherjee N., Makem J.E., Fogg H.J., A 3D constrained optimization smoother to post-process quadrilateral meshes for body-in-white, Procedia Eng., 2016, 163, 262–275, DOI: 10.1016/j.proeng.2016.11.057.
  33. Nie S., Li J., Li M., Hao M., Wang K., Xiong Y., Gan X., Zhang L., Tang P., Finite Element Analysis of a Novel Cephalomedullary Nail for Restricted Sliding to Reduce Risk of Implant Failure in Unstable Intertrochanteric Fractures, Orthop. Surg., 2022, 14 (11), 3009–3018, DOI: 10.1111/os.13497.
  34. Oliveira H., Brizuela Velasco A., Ríos-Santos J.V., Sánchez Lasheras F., Lemos B.F., Gil F.J., Carvalho A., Herrero-Climent M., Effect of different implant designs on strain and stress distribution under non-axial loading: A three-dimensional finite element analysis, Int. J. Environ. Res. Public Health, 2020, 17 (13), 4738, DOI: 10.3390/ijerph17134738.
  35. Ono K., Inoue Y., Yamasaki R., Tanaka S., Tanaka R., The effect of using walking poles on the spatiotemporal gait parameters in patients who underwent surgery for hip fractures, Acta Bioeng. Biomech., 2024, 26 (2), 1–9, DOI: 10.37190/ABB-02450-2024-02.
  36. Park J.W., Song C.A., Kang H.G., Kim J.H., Lim K.M., Kim H.S., Integration of a three-dimensional-printed titanium implant in human tissues: case study, Appl. Sci., 2020, 10 (2), 553, DOI: 10.3390/app10020553.
  37. Soliman M.M., Chowdhury M.E., Islam M.T., Musharavati F., Mahmud S., Hafizh M., Ayari M.A., Khandakar A., Alam M.K., Nezhad E.Z., Design and Performance Evaluation of a Novel Spiral Head-Stem Trunnion for Hip Implants Using Finite Element Analysis, Materials, 2023, 16 (4), 1466, DOI: 10.3390/ma16041466.
  38. Turnbull G., Clarke J., Picard F., Riches P., Jia L., Han F., Shu W., 3D bioactive composite scaffolds for bone tissue engineering, Bioact. Mater., 2018, 3 (3), 278–314, DOI: 10.1016/j.bioactmat.2017.10.001.
  39. Wang X., Wang S., Xu J., Sun D., Shen J., Xie Z., Antibiotic cement plate composite structure internal fixation after debridement of bone infection, Sci. Rep., 2021, 11 (1), 16921, DOI: 10.1038/s41598-021-96522-1.
  40. [40 Wang Y., Wang L., Soro N., Li Z., Tetsworth K., Erbulut D., Bone Ingrowth Simulation within a Novel Microstructure Scaffold, 3D Print Addit. Manuf., 2023, DOI: 10.1089/3dp.2023.0113.
  41. Weng S., Lin D., Zeng J., Liu J., Zheng K., Chen P., Lin C., Lin F., Optimal sliding distance in femoral neck system for displaced femoral neck fractures: a retrospective cohort study, J. Orthop. Surg. Res., 2024, 19 (1), 690, DOI: 10.1186/s13018-024-05190-0.
  42. Yang Y.P., Labus K.M., Gadomski B.C., Bruyas A., Easley J., Nelson B., Palmer R.H., McGilvray K., Regan D., Puttlitz C.M., Stahl A., Lui E., Li J., Moeinzadeh S., Kim S., Maloney W., Gardner M.J., Osteoinductive 3D printed scaffold healed 5 cm segmental bone defects in the ovine metatarsus, Sci. Rep., 2021, 11 (1), 6704, DOI: 10.1038/s41598-021-86210-5.
  43. Yu J., Xia H., Ni Q.Q., A three-dimensional porous hydroxyapatite nanocomposite scaffold with shape memory effect for bone tissue engineering, J. Mater. Sci., 2018, 53 (7), 4734–4744, DOI: 10.1007/s10853-017-1807-x.
  44. Zawadzka M., Kozłowska J., Ejchman-Pac E., Henrykowska G., Lewicka M., Analysis of functional efficiency and risk of falls in patients with different types of dementia-preliminary observations, Ann. Agr. Env. Med., 2024, 31 (1), DOI: 10.26444/aaem/168787.
  45. Zhang H., Zhou Y., Yu N., Ma H., Wang K., Liu J., Zhang W., Cai Z., He Y., Construction of vascularized tissueengineered bone with polylysine-modified coral hydroxyapatite and a double cell-sheet complex to repair a large radius bone defect in rabbits, Acta Biomater., 2019, 91, 82–98, DOI: 10.1016/j.actbio.2019.04.024.
  46. Zhang J., Zhao S., Zhu M., Zhu Y., Zhang Y., Liu Z., Zhang C., 3D-printed magnetic Fe3O4/MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia, J. Mater. Chem. B., 2014, 2 (43), 7583–7595, DOI: 10.1039/C4TB01063A.
  47. Zhang Y., Luo Y., Femoral bone mineral density distribution is dominantly regulated by strain energy density in remodeling, Biomed. Eng., 2020, 31 (3), 179–190, DOI: 10.3233/BME-206000.
  48. Zheng Y., Han Q., Li D., Sheng F., Song Z., Wang J., Promotion of tendon growth into implant through pore-size design of a Ti-6Al-4V porous scaffold prepared by 3D printing, Mater. Des., 2021, 197, 109219, DOI: 10.1016/j.matdes.2020. 109219.
  49. Zhu L., Luo D., Liu Y., Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration, Int. J. Oral. Sci., 2020, 12 (1), 6, DOI: 10.1038/s41368-020-0073-y.
DOI: https://doi.org/10.37190/abb-02538-2024-02 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 123 - 136
Submitted on: Oct 28, 2024
Accepted on: Dec 19, 2024
Published on: Mar 18, 2025
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Anita Gryko, Piotr Prochor, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.