Have a personal or library account? Click to login
Design and application of ISSA-BP neural network model for predicting soft tissue relaxation force Cover

Design and application of ISSA-BP neural network model for predicting soft tissue relaxation force

By: Yongli Yan,  Teng Ren,  Li Ding and  Tiansheng Sun  
Open Access
|Mar 2025

References

  1. Arora S., Anand P., Chaotic grasshopper optimization algorithm for global optimization, Neural. Comput. Appl., 2019, 31, 4385–4405, https://doi.org/10.1007/s00521-018-3343-2
  2. Barr M.L., Haveles C.S., Rezzadeh K.S., Nolan I.T., Castro R., Lee J.C., Steinbacher D. et al., Virtual surgical planning for mandibular reconstruction with the fibula free flap: a systematic review and meta-analysis, Ann. Plas. Surg., 2020, 84, 117–122, https://doi.org/10.1007/s00521-018-3343-2
  3. Bhandari K., Lin C.-H., Liao H.-T., Secondary mandible reconstruction with computer-assisted-surgical simulation and patient-specific pre-bent plates: the algorithm of virtual planning and limitations revisited, Applied Sciences, 2022, 12, 4672, https://doi.org/10.3390/app12094672
  4. Brouwer I., Mora V., Laroche D., A viscoelastic soft tissue model for haptic surgical simulation, Second Joint Euro Haptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC’07)ed., IEEE 2007, 593–594.
  5. Calvo-Gallego J.L., Domínguez J., Cía T.G., Ciriza G.G., Martínez-Reina J., Comparison of different constitutive models to characterize the viscoelastic properties of human abdominal adipose tissue. A pilot study, J. Mech. Behav. Biomed., 2018, 80, 293–302, https://doi.org/10.1016/j.jmbbm.2018.02.013
  6. Chanda A., Callaway C., Tissue anisotropy modeling using soft composite materials, Appl. Bionics Biomech., 2018, 2018, 4838157, https://doi.org/10.1155/2018/4838157
  7. Dokeroglu T., Sevinc E., Kucukyilmaz T., Cosar A., A survey on new generation metaheuristic algorithms, Comput. Ind. Eng., 2019, 137, 106040, https://doi.org/10.1016/j.cie.2019.106040
  8. Duan Y., Liu C., Sparrow search algorithm based on Sobol sequence and crisscross strategy, Journal of Computer Applications 2022, 42, 36.
  9. Duan Y., Mu C., Yang M., Deng Z., Chin T., Zhou L., Fang Q., Study on early warnings of strategic risk during the process of firms’ sustainable innovation based on an optimized genetic BP neural networks model: evidence from Chinese manufacturing firms, Int. J. Prod. Econ., 2021, 242, 108293, https://doi.org/10.1016/j.ijpe.2021.108293
  10. Friis S.J., Hansen T.S., Poulsen M., Gregersen H., Brüel A., Nygaard J.V., Biomechanical properties of the stomach: A comprehensive comparative analysis of human and porcine gastric tissue, J. Mech. Behav. Biomed., 2023, 138, 105614, https://doi.org/10.1016/j.jmbbm.2022.105614
  11. Fung Y.-C., Biomechanics: mechanical properties of living tissues, Springer Science & Business Media, 2013.
  12. Haslach Jr H.W., Nonlinear viscoelastic, thermodynamically consistent, models for biological soft tissue, Biomech. Model Mechan., 2005, 3, 172–189, https://doi.org/10.1007/s10237-004-0055-6
  13. Holzer C.S., Pukaluk A., Viertler C., Regitnig P., Caulk A.W., Eschbach M., Contini E.M. et al., Biomechanical characterization of the passive porcine stomach, Acta Biomater., 2024, 173, 167–183, https://doi.org/10.1016/j.actbio.2023.11.008
  14. Jia Z., Li W., Zhou Z., Mechanical characterization of stomach tissue under uniaxial tensile action, J. Biomech., 2015, 48, 651–658, https://doi.org/10.1016/j.jbiomech.2014.12.048
  15. Julie F.S., Strøm H.T., Mette P., Hans G., Vinge N.J., Dynamic viscoelastic properties of porcine gastric tissue: effects of loading frequency, region and direction, J. Biomech., 2022, 143, 111302, https://doi.org/10.1016/j.jbiomech.2022.111302
  16. Khan H., Abbasi S.J., Lee M.C., DPSO and inverse jacobian-based real-time inverse kinematics with trajectory tracking using integral SMC for teleoperation, IEEE Access, 2020, 8, 159622–159638.
  17. Khan M., Masood F., A novel chaotic image encryption technique based on multiple discrete dynamical maps, Multimed. Tools Appl., 2019, 78, 26203–26222, https://doi.org/10.1007/s11042-019-07818-4
  18. Lesch H., Johnson E., Peters J., Cendán J.C., VR simulation leads to enhanced procedural confidence for surgical trainees, J. Surg. Educ., 2020, 77, 213–218, https://doi.org/10.1016/j.jsurg.2019.08.008
  19. Li F., Liu J., Liu X., Wu Y., Qian L., Huang W., Li Y., Comparison of the Biomechanical Properties between Healthy and Whole Human and Porcine Stomachs, Bioengineering, 2024, 11, 233, https://doi.org/10.3390/bioengineering11030233
  20. Li J., Bi X., Zhang K., Zhang C., Liu H., Experimental study on the effects of shear stress on viscoelastic properties of the intestines, Sci. China Technol. Sc., 2019, 62, 1028–1034, https://doi.org/10.1007/s11431-018-9428-4
  21. Liu Z., Hu C., Xiang T., Hu P., Li X., Yu J., A Novel Sparrow Search Scheme Based on Enhanced Differential Evolution Operator, IEEE T. Em. Top Comp. I., 2024, DOI, 10.1109/TETCI.2024.3437202.
  22. Lu Y.-C., Untaroiu C.D., Effect of storage methods on indentation- based material properties of abdominal organs, P. I. Mech. Eng. H., 2013, 227, 293–301, https://doi.org/10.1177/0954411912468558
  23. Ma J., Hao Z., Sun W., Enhancing sparrow search algorithm via multi-strategies for continuous optimization problems, Inform. Process Manag., 2022, 59, 102854, https://doi.org/10.1016/j.ipm.2021.102854
  24. Meng A.-B., Chen Y.-C., Yin H., Chen S.-Z., Crisscross optimization algorithm and its application, Knowl.-Based Syst., 2014, 67, 218–229, https://doi.org/10.1016/j.knosys.2014.05.004
  25. Mirjalili S., Gandomi A.H., Chaotic gravitational constants for the gravitational search algorithm, Appl. Soft. Comput., 2017, 53, 407–419, https://doi.org/10.1016/j.asoc.2017.01.008
  26. Nordsletten D., Capilnasiu A., Zhang W., Wittgenstein A., Hadjicharalambous M., Sommer G., Sinkus R. et al., A viscoelastic model for human myocardium, Acta Biomater., 2021, 135, 441–457, https://doi.org/10.1016/j.actbio.2021.08.036
  27. Pedram S., Kennedy G., Sanzone S., Toward the validation of VR-HMDs for medical education: a systematic literature review, Virtual Real-London, 2023, 27, 2255–2280, https://doi.org/10.1007/s10055-023-00802-2
  28. Qiang B., Greenleaf J., Oyen M., Zhang X., Estimating material elasticity by spherical indentation load-relaxation tests on viscoelastic samples of finite thickness, IEEE T. Ultrason. Ferr., 2011, 58, 1418–1429, DOI: 10.1109/TUFFC.2011.1961.
  29. Rosen J., Brown J.D., De S., Sinanan M., Hannaford B., Biomechanical properties of abdominal organs in vivo and postmortem under compression loads, J. Biomech. Eng.-T. Asme, 2008, https://doi.org/10.1115/1.2898712
  30. Rumelhart D.E., Hinton G.E., Williams R.J., Learning representations by back-propagating errors, Nature, 1986, 323, 533–536, https://doi.org/10.1038/323533a0
  31. Sopakayang R., De Vita R., A mathematical model for creep, relaxation and strain stiffening in parallel-fibered collagenous tissues, Med. Eng. Phys., 2011, 33, 1056–1063, https://doi.org/10.1016/j.medengphy.2011.04.012
  32. Takács Á., Rudas I.J., Haidegger T., Surface deformation and reaction force estimation of liver tissue based on a novel nonlinear massspringdamper viscoelastic model, Med. Biol. Eng. Comput., 2016, 54, 1553–1562, https://doi.org/10.1007/s11517-015-1434-0
  33. Xu S., Liu X.P., Zhang H., Hu L., A nonlinear viscoelastic tensor-mass visual model for surgery simulation, IEEE T Instrum. Meas., 2010, 60, 14–20, DOI: 10.1109/TIM.2010.2065450.
  34. Xue J., Shen B., A novel swarm intelligence optimization approach: sparrow search algorithm, Syst. Sci. Control. Eng., 2020, 8, 22–34, https://doi.org/10.1080/21642583.2019.1708830
  35. Ye X., Zhang J., Li P., Wang T., Guo S., A fast and stable vascular deformation scheme for interventional surgery training system, Biomed. Eng. Online, 2016, 15, 1–14, https://doi.org/10.1186/s12938-016-0148-3
  36. Zhang J., Li L., Zhang H., Wang F., Tian Y., A novel sparrow search algorithm with integrates spawning strategy, Cluster Comput., 2024, 27, 1753–1773, https://doi.org/10.1007/s10586-023-04036-4
  37. Zhang W., Chen H.Y., Kassab G.S., A rate-insensitive linear viscoelastic model for soft tissues, Biomaterials, 2007, 28, 3579–3586, https://doi.org/10.1016/j.biomaterials.2007.04.040
DOI: https://doi.org/10.37190/abb-02529-2024-03 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 89 - 98
Submitted on: Oct 19, 2024
Accepted on: Nov 28, 2024
Published on: Mar 18, 2025
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Yongli Yan, Teng Ren, Li Ding, Tiansheng Sun, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.