Have a personal or library account? Click to login
Influence of heat treatment method on selected physicochemical and biological properties of fluoride-substituted calcium apatite Cover

Influence of heat treatment method on selected physicochemical and biological properties of fluoride-substituted calcium apatite

Open Access
|Jan 2025

References

  1. Belamri D., Harabi A., Karbouaa N., Benyahia N., The effect of KF on the structural evolution of natural hydroxyapatite during conventional and microwave sintering, Ceram. Int., 2020, 46 (1), 1189–1194.
  2. Borkowski L., Belcarz A., Przekora A., Ginalska G., Production Method for Biocompatible Implant Material, Polish Patent no. 235803, 6 October 2020.
  3. Borkowski L., Przekora A., Belcarz A., Palka K., Józefaciuk G., Lübek T., Jojczuk M., Nogalski A., Ginalska G., Fluorapatite ceramics for bone tissue regeneration: Synthesis, characterization and assessment of biomedical potential, Mater Sci. Eng. C, 2020, 116, 111211.
  4. Chaari K., Ayed F.B., Bouaziz J., Bouzouita K., Elaboration and characterization of fluorapatite ceramic with controlled porosity, Materials Chemistry and Physics, 2009, 113 (1), 219–226.
  5. El-Gendy N.S., El-salamony R.A., Younis S.A., Green synthesis of fluorapatite from waste animal bones and the photo-catalytic degradation activity of a new ZnO/green bio-catalyst nano-composite for removal of chlorophenols, J. Water Process Eng., 2016, 12, 8–19.
  6. Etok S.E., Valsami-Jones E., Wess T.J., Hiller J.C., Maxwell C.A., Rogers K.D., Manning D.A.C., White M.L., Lopezv-Capel E., Collins M.J., Buckley M., Penkman K.E.H., Woodgate S.L., Structural and chemical changes of thermally treated bone apatite, J. Mater Sci., 2007, 42 (23), 9807–9816.
  7. Fathi M.H., Zahrani E.M., Fabrication and characterization of fluoridated hydroxyapatite nanopowders via mechanical alloying, J. Alloys Compd., 2009, 475 (1–2), 408–414.
  8. Freund F., Knobel R.M., Distribution of fluorine in hydroxyapatite studied by infrared spectroscopy, J. Chem. Soc. Dalton Trans., 1977, 11, 1136–1140.
  9. Ghiasi B., Sefidbakht Y., Mozaffari-jovin S., Gharehcheloo B., Mehrarya M., Khodadadi A., Rezaei M., Ranaei siada S.O., Uskoković V., Hydroxyapatite as a bio-material – a gift that keeps on giving, Drug. Dev. Ind. Pharm., 2020, 46 (7), 1035–1062.
  10. Hammerli J., Hermann J., Tollan P., Naab F., Measuring in situ CO2 and H2O in apatite via ATR-FTIR, Contrib. Mineral Petrol., 2021, 176, 1–20.
  11. Klimuszko E., Sierpińska T., Gołębiewska M., Construction of enamel and its resistance to pathological factors. A literature review, Prosthodontics, 2015, 65 (3), 241–251.
  12. Kokubo T., Bioceramics and their Clinical Applications, Woodhead Publishing Series in Biomaterials, CRC Press, 2008.
  13. Kurmaev E.Z., Matsuya S., Shin S., Watanabe M., Eguchi R., Ishiwata Y., Takeuchi T., Iwami M., Observation of fluorapatite formation under hydrolysis of tetracalcium phosphate in the presence of KF by means of soft X-ray emission and absorption spectroscopy, J. Mater Sci.-Mater M., 2002, 13 (1), 33–36.
  14. Laska A., Biomateriały stosowane w inżynierii tkankowej do regeneracji tkanek, Zeszyty Naukowe Towarzystwa Doktorantów Uniwersytetu Jagiellońskiego, Nauki Ścisłe, 2017, 14, 187–196.
  15. Legeros R.Z., Biodegradation and bioresorption of calcium phosphate ceramics, Clin. Mater, 1993, 14 (1), 65–88.
  16. Malina D., Biernat K., Sobczak-kupiec A., Studies on sintering process of synthetic hydroxyapatite, Acta Biochim. Pol., 2013, 60 (4), 851–855.
  17. Nakade O., Koyama H., Arai J., Ariji H., Takada J., Kaku T., Stimulation by low concentrations of fluoride of the proliferation and alkaline phosphatase activity of human dental pulp cells in vitro, Arch. Oral Biol., 1999, 44, 89–92.
  18. Obada D.O., Dauda E.T., Abifarin J.K., Dodoo-Arhin D., Bansod N.D., Mechanical properties of natural hydroxyapatite using low cold compaction pressure: Effect of sintering temperature, Mater Chem. Phys., 2020, 239, 122099.
  19. Obada D.O., Idris N., Idris M., Dan-asabe B., Salami K.A., Oyedeji A.N., Csaki S., Sowunmi A.R., Abolade S.A., Akinpelu S.B., Akande A., The effect of sintering dwell time on the physicochemical properties and hardness of hydroxyapatite with insights from ab initio calculations, CSCEE, 2024, 9, 100648.
  20. Ooi C.Y., Hamdi M., Ramesh S., Properties of hydroxyapatite produced by annealing of bovine bone, Ceram. Int., 2007, 33 (7), 1171–1177.
  21. Pajor K., Pajchel L., Kolmas J., Hydroxyapatite and Fluorapatite in Conservative Dentistry and Oral Implantology – A Review, Materials, 2019, 12 (17), 2683.
  22. Poovendran K., Wilson K.J., Amalgamation and characterization of porous hydroxyapatite bio ceramics at two various temperatures, Mater Sci. Semicond. Process, 2019, 100, 255–261.
  23. Prokopiev O., Sevostianov I., Dependence of the mechanical properties of sintered hydroxyapatite on the sintering temperature, Mater Sci. Eng. A, 2006, 431 (1–2), 218–227.
  24. Przekora A., Czechowska J., Pijocha D., Ślósarczyk A., Ginalska G., Do novel cement-type biomaterials reveal ion reactivity that affects cell viability in vitro?, Open Life Sci., 2014, 9 (3), 277–289.
  25. Rey C., Maturation of poorly crystalline apatites: chemical and structural aspects in vivo and in vitro, Cells and Mater, 1995, 5, 345–356.
  26. Rintoul L., Wentrup-byrne E., Suzuki S., Grøndahl L., FT-IR spectroscopy of fluoro-substituted hydroxyapatite: strengths and limitations, J. Mater Sci. Mater Med., 2007, 18, 1701–1709.
  27. Ślosarczyk A., Biomateriały ceramiczne, Biocybernetyka i Inżynieria Biomedyczna, [in:] S. Blazewicz, L. Stoch, Biomateriały, AOW EXIT, 2003.
  28. Ślosarczyk A., Szymura-oleksiak J., Mycek B., The kinetics of pentoxifylline release from drug-loaded hydroxyapatite implants, Biomaterials, 2000, 21, 1215–1221.
  29. Standard ISO 10993-5:2009. Biological Evaluation of Medical Devices – Part 5: Tests for In Vitro Cytotoxicity; International Organization for Standardization: Geneva, Switzerland, 2009.
  30. Szczepkowska M., Łuczuk M., Porous materials for the medical applications, Syst. Wspomagania Inżynierii Prod., 2014, 2, 231–239.
  31. Tacker R.C., Hydroxyl ordering in igneous apatite, Am. Min., 2004, 89 (10), 1411–1421.
  32. Taheri M.M., Kadir M.R.A., Shokuhfar T., Hamlekhan A., Assadian M., Shirdar M.R., Mirjalili A., Surfactant-assisted hydrothermal synthesis of fluoridated hydroxyapatite nanorods, Ceram. Int., 2015, 41 (8), 9867–9872.
  33. Telesiński A., Śnioszek M., Bioindykatory zanieczyszczenia środowiska naturalnego fluorem, Bromatol. Chem. Toksyk, 2009, 42 (4), 1148–1145.
  34. Tredwin C.J., Young A.M., Abou Neel E.A., Georgiou G., Knowles J.C., Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol–gel method: dissolution behaviour and biological properties after crystallisation, J. Mater Sci.-Mater M., 2014, 25 (1), 47–53.
  35. Trzaskowska M., Vivcharenko V., Przekora A., The impact of hydroxyapatite sintering temperature on its micro-structural, mechanical, and biological properties, I. J. Mol. Sci., 2023, 24 (6), 5083.
  36. Tsuruga E., Takita H., Itoh H., Wakisaka Y., Kuboki Y., Pore Size of Porous Hydroxyapatite as the Cell-Substratum Controls BMP-Induced Osteogenesis, J Biochem, 1997, 121 (2), 317–324.
  37. Wang A.J., Lu Y.P., Zhu R.F., Li S.T., Xiao G.Y., Zhao G.F., Xu W.H., Effect of sintering on porosity, phase, and surface morphology of spray dried hydroxyapatite microspheres, J. Biomed. Mater Res. A., 2008, 87 (2), 557–562.
  38. Wirtu Y.D., Melak F., Yitbarek M., Astatkie H., Aluminum coated natural zeolite for water defluoridation: a mechanistic insight, Groundw. Sustain. Dev., 2021, 12, 100525.
  39. Xu Z., Qian G., Feng M., Using polyacrylamide to control particle size and synthesize porous nano hydroxyapatite, Results Phys., 2020, 16, 102991.
  40. Yoon B.H., Kim H.W., Lee S.H., Bae C.J., Koh Y.H., Kong Y.M., Kim H.E., Stability and cellular responses to fluorapatite-collagen composites, Biomaterials, 2005, 26 (16), 2957–2963.
DOI: https://doi.org/10.37190/abb-02484-2024-04 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 183 - 191
Submitted on: Jul 19, 2024
Accepted on: Oct 28, 2024
Published on: Jan 27, 2025
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Sylwia Zawiślak, Joanna Rutkowska, Marta Trzaskowska, Krzysztof Pałka, Leszek Borkowski, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.