Have a personal or library account? Click to login
Use of AI methods to assessment of lower limb peak torque in deaf and hearing football players group Cover

Use of AI methods to assessment of lower limb peak torque in deaf and hearing football players group

Open Access
|Jan 2025

References

  1. Aasheim C., Stavenes H., Andersson S.H., Engbretsen L., Clarsen B., Prevalence and burden of overuse injuries in elite junior handball, BMJ Open Sport Exerc. Med., 2018, 4, e000391.
  2. Ahmed M., Alqadhi S., Mallick J., Kahla N.B., Le H.A., Singh C.K., Hang H.T., Artificial neural networks for sustainable development of the construction industry, Sustainability, 2022, 14, 14738.
  3. Alemdaroğlu U., The relationship between muscle strength, anaerobic performance, agility, sprint ability and vertical jump performance in professional basketball players, Journal of Human Kinetics, 2012, 31, 149–158, DOI: 10.2478/v10078-012-0016-6.
  4. Andersson S.H., Bahr R., Clarsen B., Myklebust G., Preventing overuse shoulder injuries among throwing athletes: A cluster-randomised controlled trial in 660 elite handball players, Br. J. Sports Med., 2017, 51, 1073–1080.
  5. Asai A., Konno M., Taniguchi M., Vecchione A., Ishii H., Computational healthcare: Present and future perspectives, Exp. Ther. Med., 2021, 22 (6), 1351.
  6. Awan M.J., Gilani S.A.H., Ramzan H., Nobanee H., Yasin A., Zain A.M., Javed R., Cricket match analytics using the big data approach, Electronics, 2021, 10, 2350.
  7. Barnes M., Hanson C., Giraud-carrier C., The Case for Computational Health Science, J. Healthc. Inform. Res., 2018, 2 (1), 99–110.
  8. Bhuyan H.K., Pani S.K., Analysis of healthcare systems using computational approaches. In Big data analytics and machine intelligence in biomedical and health informatics, S.K. Dhal, S.K. Pani, S. Prasad, S.K. Mohapatra (Eds.), Wiley, 2022.
  9. Bona C.C., Filho H.T., Izquierdo M., Ferraz R.M.P., Marques M.C., Peak torque and muscle balance in the knees of young U-15 and U-17 soccer athletes playing various tactical positions, Journal of Sports Medicine and Physical Fitness, 2017, 57, 923–929.
  10. Cust E.E., Sweeting A.J., Ball K., Robertson S., Machine and deep learning for sport-specific movement recognition: A systematic review of model development and performance, J. Sports Sci., 2019, 37, 568–600.
  11. Danek J., Wojtasik W., Szulc A., Measurement of maximal isometric torque and muscle fatigue index of the knee muscles in male athletes, Acta Bioeng. Biomech., 2019, 21 (3), 31–37.
  12. Delvaux F., Schwartz C., Rodriguez C., Forthomme B., Kaux J.F., Croisier J.L., Preseason assessment of anaerobic performance in elite soccer players: comparison of isokinetic and functional tests, Sports Biomechanics, 2020, 22 (5), 689–703, DOI: https://doi.org/10.1080/14763141.2020.1750681.
  13. Diker G., Struzik A., Ön S., Zileli R., The Relationship between the hamstring-to-quadriceps ratio and jumping and sprinting abilities of young male soccer players, Int. J. Environ. Res. Public Health, 2022, 19 (12), 7471.
  14. Dumitrescu C., Ciotirnae P., Vizitiu C., Fuzzy logic for intelligent control system using soft computing applications, Sensors, 2021, 21, 2617.
  15. Green B., Bourne M.N., Pizzari T., Isokinetic strength assessment offers limited predictivevalidity for detecting risk of future hamstringstrain in sport: a systematic review and meta-analysis, Br. J. Sports Med., 2018, 52, 329–336.
  16. Kabaciński J., Szozda P.M., Maćkała K., Murawa M., Rzepnicka A., Szewczyk P., Dworak L.B., Relationship between isokinetic knee strength and speed, agility, and explosive power in elite soccer players, Int. J. Environ. Res. Public Health, 2022, 19 (2), 671.
  17. Kawala-Janik A., Bauer W., Żołubak M., Baranowski J., Early-stage pilot study on using fractional-order calculus-based filtering for the purpose of analysis of electroencephalography signals, Studies in Logic, Grammar and Rhetoric, 2016, 47 (1), 103–111.
  18. Kellis E., Sahinis C., Baltzopoulos V., Is hamstrings-toquadriceps torque ratio useful for predicting anterior cruciate ligament and hamstring injuries? A systematic and critical review, J. Sport Health Sci., 2023, 12 (3), 343–358.
  19. Kim D., Hong J., Hamstring to quadriceps strength ratio and noncontact leg injuries: A prospective study during one season, Isokinet. Exerc. Sci., 2011, 19, 1–6.
  20. Lee J.W., Song S., Kim Y., Park S.B., Han D.H., Soccer’s AI transformation: deep learning’s analysis of soccer’s pandemic research evolution, Front Psychol., 2023, 14, 1244404.
  21. Lehnert M., Stastny P., Tufano J.J., Stolfa P., Changes in Isokinetic Muscle Strength in Adolescent Soccer Players after 10 Weeks of Pre-Season Training, The Open Sports Sciences Journal, 2017, 10 (Suppl. S1), 27–36, DOI: 10.2174/1875399X01710010027.
  22. Pietraszewska J., Struzik A., Burdukiewicz A., Stachoń A., Pietraszewski B., Relationships between body build and knee joint flexor and extensor torque of polish first-division soccer players, Appl. Sci., 2020, 10 (3), 783.
  23. Prokopowicz P., The use of Ordered Fuzzy Numbers for modeling changes in dynamic processes, Inf. Sci., 2019, 470, 1–14.
  24. Prokopowicz P., Golsefid S.M.M., Aggregation operator for Ordered Fuzzy Numbers concerning the direction, [in:] Artificial-Intelligence and Soft Computing, ICAISC 2014. Lecture Notes in Computer Science, L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L.A. Zadeh, J.M. Zurada (Eds.), Springer: Cham, Switzerland, 2014, Vol. 8467.
  25. Radivoje R., Lazar D., Milivoj D., Nenad F., Multiple regression analysis for competitive performance assessment of professional soccer players, Technol. Health Care, 2023.
  26. Read P.J., Trama R., Racinais S., Mcauliffe S., Klauznicer J., Alhammoud M., Angle specific analysis of hamstrings and quadriceps isokinetic torque identify residual deficits in soccer players following ACL reconstruction: a longitudinal investigation, Journal of Sports Sciences, 2022, 40 (8), 871–877, DOI: https://doi.org/10.1080/02640414.2021.2022275.
  27. Śliwowski R., Grygorowicz M., Hojszyk R., Jadczak Ł., The isokinetic strength profile of elite soccer players according to playing position, PLoS One, 2017, 12 (7), e0182177.
  28. Struzik A., Pietraszewski B., Relationships between ham-strings-to-quadriceps ratio and variables describing countermovement and drop jumps, Appl. Bionics Biomech., 2019, 4505481.
  29. Szu-han wang H., Yao Y., Machine learning for sustainable development and applications of biomass and biomass-derived carbonaceous materials in water and agricultural systems: A review, Resources, Conservation and Recycling 2023, 190, 106847.
  30. Szulc A., Buśko K., Sandurska E., Kołodziejczyk M., The biomechanical characteristics of elite deaf and hearing female soccer players: comparative analysis, Acta Bioeng. Biomech., 2017, 19 (4), 127–133.
  31. Szulc A., Prokopowicz P., Buśko K., Mikołajewski D., Model of the performance based on artificial intelligence – fuzzy logic description of physical activity, Sensors, 2023, 23, 1117.
  32. Szulc A.M., The report and analysis of the 2nd U21 European Deaf Football Championship, Stockholm, Sweden 2018, Human Movement, 2018, 20 (3), 80–87.
  33. Tatlicioğlu E., Atalağ O., Kurt C., Acar M.F., Investigation of the relationships between isokinetic leg strength, sprint and agility performance in collegiate American football players, Turk. J. Sports Med., 2020, 55, 192–199, DOI: 10.5152/tjsm.2020.175.
  34. Van Den Tillaar R., Bhandurge S., Stewart T., Can machine learning with IMUs be used to detect different throws and estimate ball velocity in team handball?, Sensors, 2021, 21, 2288.
  35. Voukelatos D., Evangelidis P.E., Pain M.T.G., The ham-strings to quadricepsfunctional ratio expressed over the full angle-angular velocity range using a limited number ofdata points, R. Soc. Open Sci., 2022, 9 (4), 210696.
  36. Ważny M., Wójcik G.M., Shifting spatial attention – numerical model of Posner experiment, Neurocomputing, 2014, 135, 139–144.
  37. Wrigley T.W., Assessment for football: Soccer, Australian rules, and American, [in:] L.E. Brown (Ed.), Isokinetics in Human Performance, Human Kinetics; Champaign, IL, USA: 2000, 407–428, DOI: 0.2174/1875399X01710010027.
  38. Yilmaz A.K., Kabadayi M., Bostanci Ö., Özdal M., Mayda M.H., Analysis of isokinetic knee strength in soccer players in terms of selected parameters, Physical Education of Students, 2019, 23 (4), 209–216, DOI: https://doi.org/10.15561/20755279.2019.0408.
  39. Zago M., Sforza C., Dolci C., Tarabini M., Galli M., Use of Machine Learning and Wearable Sensors to Predict Energetics and Kinematics of Cutting Maneuvers, Sensors, 2019, 19, 3094, DOI: https://doi.org/10.3390/s19143094.
  40. Zhang Y., Ma Y., Application of supervised machine learning algorithms in the classification of sagittal gait patterns of cerebral palsy children with spastic diplegia, Comput. Biol. Med., 2019, 106, 33–39.
DOI: https://doi.org/10.37190/abb-02474-2024-02 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 123 - 134
Submitted on: Jul 10, 2024
Accepted on: Oct 8, 2024
Published on: Jan 27, 2025
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Adam Michał Szulc, Piotr Prokopowicz, Dariusz Mikołajewski, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.