Have a personal or library account? Click to login
Assessment of material properties in key components of the porcine crystalline lens during overshooting Cover

Assessment of material properties in key components of the porcine crystalline lens during overshooting

Open Access
|Mar 2025

References

  1. Ayyalasomayajula A., Park R.I., Simon B.R., Van de Geest J.P., A porohyperelastic finite element model of the eye: the influence of stiffness and permeability on intraocular pressure and optic nerve head biomechanics, Comput. Methods Biomech. Biomed. Eng., 2016, 19 (6), 591–602.
  2. Bocskai Z., Bojtár I., Biomechanical modelling of the accommodation problem of human eye, Period Polytech. Civ. Eng., 2013, 57 (1), 3–9.
  3. Boszczyk A., Dębowy F., Jóźwik A., Dahaghin A., Siedlecki D., Complexity of crystalline lens wobbling investigated by means of combined mechanical and optical simulations, Biomed. Opt. Express, 2023, 14 (6), 2465–2477.
  4. Coldrick B., Modelling the human accommodation system using finite element analysis, Dissertation, Aston University, 2013.
  5. Dahaghin A., Salimibani M., Boszczyk A., Jóźwik A., Skrok M., Grasa J., Siedlecki D., Investigation of the crystalline lens overshooting: ex-vivo experiment and opto-mechanical simulation results, Front. Bioeng. Biotechnol., 2024, 12, DOI: 10.3389/fbioe.2024.1348774 p. 1348774.
  6. Dahaghin A., Salimibani M., Boszczyk A., Siedlecki D., Effect of Tissue Parameters on the Dynamics of Crystalline Lens Overshooting, Invest. Ophthalmol. Vis. Sci., 2024, 65 (7), 5041.
  7. Etminan A., Salimibani M., Dahaghin A., Haghpanahi M., Maleki A., FEM thermal assessment of a 3-D irregular tumor with capillaries in magnetic nanoparticle hyperthermia via dissimilar injection points, Comput. Biol. Med., 2023, 157, DOI: 10.1016/j.compbiomed.2023.106771.
  8. Genest R., Chandrashekar N., Irving E., The effect of intraocular pressure on chick eye geometry and its application to myopia, Acta Bioeng. Biomech., 2012, 14 (2), 3–8.
  9. Hoffmann E.M., Aghayeva F., Wagner F.M., Fiess A., Nagler M., Münzel T., Wild P.S., Beutel M.E., Schmidtmann I., Lackner K.J., Pfeiffer N., Schuster A.K., Intraocular Pressure and Its Relation to Ocular Geometry: Results From the Gutenberg Health Study, Invest. Ophthalmol. Vis. Sci., 2022, 63 (1), DOI: 10.1167/iovs.63.1.40.
  10. Issarti I., Koppen C., Rozema J.J., Influence of the eye globe design on biomechanical analysis, Comput. Biol. Med., 2021, 135, DOI: 10.1016/j.compbiomed.2021.104612.
  11. Kampmeier J., Radt B., Birngruber R., Brinkmann R., Thermal and biomechanical parameters of porcine cornea, Cornea, 2000, 19 (3), 355–363.
  12. Karimi A., Rahmati S.M., Razaghi R., Girkin C.A., Crawford Downs J., Finite element modeling of the complex anisotropic mechanical behavior of the human sclera and pia mater, Comput. Methods Programs Biomed., 2022, 215, DOI: 10.1016/j.cmpb.2022.106618.
  13. Kori S., Time since death from rigor mortis: forensic prospective, J. Forensic Sci. and Criminal Inves., 2018, 9, 1–10.
  14. Krag S., Andreassen T.T., Mechanical properties of the human lens capsule, Prog. Retin Eye Res., 2003, 22 (6), 749–767.
  15. Lanchares E., Navarro R., Calvo B., Hyperelastic modelling of the crystalline lens: Accommodation and presbyopia, J. Optom., 2012, 5 (3), 110–120.
  16. Ljubimova D., Eriksson A., Bauer S., Numerical study of the effect of vitreous support on eye accommodation, Acta Bioeng. Biomech., 2005, 7 (2), 3–16.
  17. Martin H., Bahlke U., Guthoff R., Rheinschmitt L., Schmitz K.P., Determination of inertia forces at an intraocular lens implant during saccades, [in:] World Congress on Medical Physics and Biomedical Engineering, September 7–12, 2009, Munich, Germany: Vol. 25/11, Biomedical Engineering for Audiology, Ophthalmology, Emergency & Dental Medicine. Springer, 2009.
  18. Menduni F., Davies L.N., Madrid-Costa D., Fratini A., Wolffsohn J.S., Characterisation of the porcine eyeball as an in-vitro model for dry eye, Cont. Lens Anterior Eye, 2018, 41 (1), 13–17.
  19. Muñoz Sarmiento D.M., Rodríguez Montaño Ó.L., Alarcón Castiblancoa J.D., Cortés Rodríguez C.J., The impact of horizontal eye movements versus intraocular pressure on optic nerve head biomechanics: A tridimensional finite element analysis study, Heliyon, 2023, 9 (2), DOI: 10.1016/j.heliyon.2023.e13634.
  20. Nyström M., Andersson R., Magnusson M., Pansell T., Hooge I., The influence of crystalline lens accommodation on post-saccadic oscillations in pupil-based eye trackers, Vision Res., 2015, 107, 1–14.
  21. Olhoff N., Lund E., Finite element based design sensitivity analysis and optimization, [in:] Jose Herskovits (ed.) Advances in Structural Optimization, Kluver Academic Publishers, 2005.
  22. Redaelli E., Grasa J., Calvo B., Rodriguez Matas J.F., Luraghi G., A detailed methodology to model the Non Contact Tonometry: a Fluid Structure Interaction study, Front. Bioeng. Biotechnol., 2022, 10, DOI: 10.3389/fbioe.2022.981665.
  23. Regal S., Troughton J., Djenizian T., Ramuz M., Biomimetic models of the human eye, and their applications, Nanotechnol., 2021, 32 (30), DOI: 10.1088/1361-6528/abf3ee.
  24. Rossi T., Boccassini B., Esposito L., Iossa M., Ruggiero A., Tamburrelli C., Bonora N., The pathogenesis of retinal damage in blunt eye trauma: finite element modeling, Invest. Ophthalmol. Vis. Sci., 2011, 52 (7), 3994–4002.
  25. Ruan C., Yu Q., Zhou J., Ou X., Liu Y., Chen Y., Fluidstructure interaction simulation for studying hemodynamics and rupture risk of patient-specific intracranial aneurysms, Acta Bioeng. Biomech., 2023, 25 (3), 73–85.
  26. Rusińska M., Gruber P., Ziółkowski G., Łabowska M., Wilińska K., Szymczyk-Ziółkowska P., The influence of Material Extrusion process parameters on the porosity and mechanical properties of PLA products for medical applications, Acta Bioeng. Biomech., 2023, 25 (3), 25–41.
  27. Singh D., Firouzbakhsh K., Ahmadian M.T., Human intraocular thermal field in action with different boundary conditions considering aqueous humor and vitreous humor fluid flow, Int. J. Mech. Mechatron. Eng., 2017, 11 (4), 717–725.
  28. Tabernero J., Artal P., Lens oscillations in the human eye. Implications for post-saccadic suppression of vision, PloS one, 2014. 9 (4), DOI: 10.1371/journal.pone.0095764.
  29. Vannah W.M., Childress D.S., Modelling the mechanics of narrowly contained soft tissues: the effects of specification of Poissons ratio, J. Rehabil. Res. Dev., 1993, 30, 205–209.
  30. Wang K., Venetsanos D.T., Hoshino M., Uesugi K., Yagi N., Pierscionek B.K., A modeling approach for investigating opto-mechanical relationships in the human eye lens, IEEE Trans. Biomed. Eng., 2019, 67 (4), 999–1006.
  31. Yan Y., Shi H., Zhao Y., Cao Y., Xie Z., Correlation study of biomechanical changes between diabetic eye disease and glaucoma using finite element model of human eye with different iris-lens channel distances, Med. Eng. Phys., 2022, 109, DOI: 10.1016/j.medengphy.2022.103910.
  32. Zhou B., Sit A.J., Zhang X., Noninvasive measurement of wave speed of porcine cornea in ex vivo porcine eyes for various intraocular pressures, Ultrason., 2017, 81, 86–92.
DOI: https://doi.org/10.37190/abb-02463-2024-03 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 39 - 50
Submitted on: Jun 6, 2024
Accepted on: Nov 10, 2024
Published on: Mar 18, 2025
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Milad Salimibani, Ali Dahaghin, Agnieszka Boszczyk, Jorge Grasa, Damian Siedlecki, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.