References
- A
spden R.M., Aliasing Effects in Fourier-Transforms of Monotonically Decaying Functions and the Calculation of Viscoelastic Moduli by Combining Transforms over Different Time Periods, Journal of Physics D-Applied Physics, 1991, 24, 803–808, https://doi.org/Doi10.1088/0022-3727/24/6/002 - B
artlett R.D., Eleftheriadou D., Evans R., Choi D., Phillips J.B., Mechanical properties of the spinal cord and brain: Comparison with clinical-grade biomaterials for tissue engineering and regenerative medicine, Biomaterials, 2020, 120303, https://doi.org/10.1016/j.biomaterials.2020.120303 - B
occia E., Gizzi A., Cherubini C., Nestola M.G.C., Filippi S., Viscoelastic computational modeling of the human head-neck system: Eigenfrequencies and time-dependent analysis, Int. J. Numer. Method. Biomed. Eng., 2018, 34, https://doi.org/10.1002/cnm.2900 - B
oiczyk G.M., Pearson N., Kote V.B., Sundaramurthy A., Subramaniam D.R., Rubio J.E., Unnikrishnan G., Reifman J., Monson K., Rate- and Region-Dependent Mechanical Properties of Göttingen Minipig Brain Tissue in Simple Shear and Unconfined Compression, Journal of Biomechanical Engineering, 2022, 1–61, https://doi.org/10.1115/1.4056480 - B
udday S., Sommer G., Birkl C., Langkammer C., Haybaeck J., Kohnert J., Bauer M., Paulsen F., Steinmann P., Kuhl E., Holzapfel G.A., Mechanical characterization of human brain tissue, Acta Biomaterialia, 2017, 48, 319–340, https://doi.org/10.1016/j.actbio.2016.10.036 - C
heng S., Bilston L.E., Unconfined compression of white matter, J. Biomech., 2007, 40, 117–124. https://doi.org/10.1016/j.jbiomech.2005.11.004 - D
istler T., Schaller E., Steinmann P., Boccaccini A.R., Budday S., Alginate-based hydrogels show the same complex mechanical behavior as brain tissue, Journal of the Mechanical Behavior of Biomedical Materials, 2020, 111, 103979, https://doi.org/10.1016/j.jmbbm.2020.103979 - E
lkin B.S., Ilankova A., Morrison B., Dynamic, Regional Mechanical Properties of the Porcine Brain: Indentation in the Coronal Plane, Journal of Biomechanical Engineering-Transactions of the Asme, 2011, 133. - F
eng Y., Lee C.H., Sun L., Ji S., Zhao X., Characterizing white matter tissue in large strain via asymmetric indentation and inverse finite element modeling, J. Mech. Behav. Biomed. Mater, 2017, 65, 490–501, https://doi.org/10.1016/j.jmbbm.2016.09.020 - F
orte A.E., Gentleman S.M., Dini D., On the characterization of the heterogeneous mechanical response of human brain tissue, Biomech. Model Mechanobiol., 2017, 16, 907–920, https://doi.org/10.1007/s10237-016-0860-8 - G
arcia -Gonzalez D., Race N.S., Voets N.L., Jenkins D.R., Sotiropoulos S.N., Acosta G., Cruz -Haces M., Tang J., Shi R., Jérusalem A., Cognition based bTBI mechanistic criteria; a tool for preventive and therapeutic innovations, Scientific Reports, 2018, 8, 10273. - G
efen A., Margulies S.S., Are in vivo and in situ brain tissues mechanically similar?, Journal of Biomechanics, 2004, 37, 1339 –1352, https://doi.org/10.1016/j.jbiomech.2003.12.032 - H
ussey G.S., Dziki J.L., Badylak S.F., Extracellular matrix- based materials for regenerative medicine, Nature Reviews Materials, 2018, 3, 159–173. - K
oncan D., Gilchrist M., Vassilyadi M., Hoshizaki T.B., A three-dimensional finite element model of a 6-year-old child for simulating brain response from physical reconstructions of head impacts, Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 2019, https://doi.org/10.1177/1754337118822940 - K
uth S., Karakaya E., Reiter N., Schmidt L., Paulsen F., Teßmar J., Budday S., Boccaccini A.R., Oxidized Hyaluronic Acid-Gelatin-Based Hydrogels for Tissue Engineering and Soft Tissue Mimicking, Tissue Engineering Part C: Methods, 2022, https://doi.org/10.1089/ten.tec.2022.0004 - L
i W., Shepherd D.E.T., Espino D.M., Frequency and time dependent viscoelastic characterization of pediatric porcine brain tissue in compression, Biomech. Model Mechanobiol., 2024, https://doi.org/10.1007/s10237-024-01833-7 - L
i W., Shepherd D.E.T., Espino D.M., Dynamic mechanical characterization and viscoelastic modeling of bovine brain tissue, Journal of the Mechanical Behavior of Biomedical Materials, 2021a, 114, 104204, https://doi.org/10.1016/j.jmbbm.2020.104204 - L
i W., Shepherd D.E.T., Espino D.M., Investigation of the Compressive Viscoelastic Properties of Brain Tissue Under Time and Frequency Dependent Loading Conditions, Annals of Biomedical Engineering, 2021b, https://doi.org/10.1007/s10439-021-02866-0 - L
i W., Shepherd D.E.T., Espino D.M., Frequency dependent viscoelastic properties of porcine brain tissue, Journal of the Mechanical Behavior of Biomedical Materials, 2020, 102, 103460, https://doi.org/10.1016/j.jmbbm.2019.103460 - L
i Z., Ji C., Li D., Luo R., Wang G., Jiang J., A comprehensive study on the mechanical properties of different regions of 8- week-old pediatric porcine brain under tension, shear, and compression at various strain rates, Journal of Biomechanics, 2020, 98, 109380, https://doi.org/10.1016/j.jbiomech.2019.109380 - L
i Z.G., Yang H.F., Wang G.L., Han X.Q., Zhang S.P., Compressive properties and constitutive modeling of different regions of 8-week-old pediatric porcine brain under large strain and wide strain rates, Journal of the Mechanical Behavior of Biomedical Materials, 2019, 89, 122–131, https://doi.org/10.1016/j.jmbbm.2018.09.010 - M
c Cracken P.J., Manduca A., Felmlee J., Ehman R.L., Mechanical transient-based magnetic resonance elastography, Magnetic Resonance in Medicine, 2005, 53, 628–639, https://doi.org/10.1002/mrm.20388 - M
endizabal A., Aguinaga I., Sánchez E., Characterisation and modelling of brain tissue for surgical simulation, Journal of the Mechanical Behavior of Biomedical Materials, 2015, 45, 1–10, https://doi.org/10.1016/j.jmbbm.2015.01.016 - M
orse J.D., Franck J.A., Wilcox B.J., Crisco J.J., Franck C., An experimental and numerical investigation of head dynamics due to stick impacts in girls’ lacrosse, Annals of Biomedical Engineering, 2014, 42, 2501–2511, https://doi.org/10.1007/s10439-014-1091-8 - N
icolle S., Lounis M., Willinger R., Shear Properties of Brain Tissue over a Frequency Range Relevant for Automotive Impact Situations: New Experimental Results, Stapp Car Crash J., 2004, 48, 239–258. - N
ovak U., Kaye A.H., Extracellular matrix and the brain: components and function, Journal of Clinical Neuroscience, 2000, 7, 280–290. - P
range M.T., Margulies S.S., Regional, directional, and age-dependent properties of the brain undergoing large deformation, Journal of Biomechanical Engineering-Transactions of the Asme, 2002, 124, 244–252, https://doi.org/10.1115/1.1449907 - P
revost T.P., Jin G.,de Moya M.A., Alam H.B., Suresh S., Socrate S., Dynamic mechanical response of brain tissue in indentation in vivo, in situ and in vitro, Acta Biomaterialia, 2011, 7, 4090–4101, https://doi.org/10.1016/j.actbio.2011.06.032 - Q
ian L., Sun Y., Tong Q., Tian J., Ren Z., Zhao H., Indentation response in porcine brain under electric fields, Soft Matter, 2019, 15, 623–632, https://doi.org/10.1039/C8SM01272E - Q
ian L., Zhao H., Guo Y., Li Y., Zhou M., Yang L., Wang Z., Sun Y., Influence of strain rate on indentation response of porcine brain, J. Mech. Behav. Biomed. Mater, 2018, 82, 210–217, https://doi.org/10.1016/j.jmbbm.2018.03.031 - R
ashid B., Destrade M., Gilchrist M.D., Mechanical characterization of brain tissue in tension at dynamic strain rates, J. Mech. Behav. Biomed. Mater, 2014, 33, 43–54, https://doi.org/10.1016/j.jmbbm.2012.07.015 - R
ashid B., Destrade M., Gilchrist M.D., Mechanical characterization of brain tissue in compression at dynamic strain rates, J. Mech. Behav. Biomed. Mater, 2012, 10, 23–38, https://doi.org/10.1016/j.jmbbm.2012.01.022 - R
asmussen M.K., Mestre H., Nedergaard M., Fluid transport in the brain, Physiological Reviews, 2022, 102, 1025–1151. - R
auchman S.H., Albert J., Pinkhasov A., Reiss A.B., Mild-to-Moderate Traumatic Brain Injury: A Review with Focus on the Visual System, Neurol. Int., 2022, 14, 453–470, https://doi.org/10.3390/neurolint14020038 - S
ahoo D., Deck C., Willinger R., Brain injury tolerance limit based on computation of axonal strain, Accid Anal. Prev., 2016, 92, 53–70, https://doi.org/10.1016/j.aap.2016.03.013 - W
ang J., Zhang Y., Jiang Z., Zhou L., Liu Z., Liu Y., Yang B., Tang L., Mechanical behavior and constitutive equations of porcine brain tissue considering both solution environment effect and strain rate effect, Mechanics of Advanced Materials and Structures, 2023, 1–15, https://doi.org/10.1080/15376494.2022.2150917 - W
ang J., Zhang Y., Lei Z., Wang J., Zhao Y., Sun T., Jiang Z., Zhou L., Liu Z., Liu Y., Yang B., Tang L., Hydrogels with brain tissue-like mechanical properties in complex environments, Materials and Design, 2023, 234, 112338, https://doi.org/10.1016/j.matdes.2023.112338 - Y
oung L., Rule G.T., Bocchieri R.T., Walilko T.J., Burns J.M., Ling G., When physics meets biology: low and high-velocity penetration, blunt impact, and blast injuries to the brain, Frontiers in Neurology, 2015, 6, 89, https://doi.org/10.3389/fneur.2015.00089 - Z
hao H., Yin Z., Li K., Liao Z., Xiang H., Zhu F., Mechanical Characterization of Immature Porcine Brainstem in Tension at Dynamic Strain Rates, Med. Sci. Monit. Basic. Res., 2016, 22, 6–13, https://doi.org/10.12659/MSMBR.896368