Have a personal or library account? Click to login
Assessing the effect of chest orientation on pulmonary pressure under free field shock waves: a numerical analysis Cover

Assessing the effect of chest orientation on pulmonary pressure under free field shock waves: a numerical analysis

Open Access
|Jan 2025

References

  1. Andrikakou P., Vickraman K., Arora H., On the behavior of lung tissue under tension and compression, Sci. Rep., 2016, 6, 36642.
  2. Axelsson H., Yelverton J.T., Chest wall velocity as a predictor of nonauditory blast injury in a complex wave environment, J. Trauma, 1996, 40 (3 Suppl), S31–37.
  3. Bao Z.Y., Study on dynamic mechanical properties of biological soft tissue, Dissertation, Nanjing University of Science and Technology, 2019.
  4. Bass C.R., Rafaels K.A., Salzar R.S., Pulmonary Injury Risk Assessment for Short-Duration Blasts, J. Trauma, 2008, 65 (3), 604–615.
  5. Bhana R.H., Magan A.B., Lung Mechanics: A Review of Solid Mechanical Elasticity in Lung Parenchyma, J. Elast., 2023, 153 (1), 53–117.
  6. Bowen I.G., Fletcher E.R., Richmond D.R., Estimate of mans tolerance to the direct effects of air blast, Dissertation, Lovelace Foundation for Medical Education and Research, 1968.
  7. Carmo G.P., Dymek M., Ptak M., Alves_De_Sousa R.J., Fernandes F.A.O., Development, Validation and a Case Study: The Female Finite Element Head(FeFEHM), Comput. Methods Programs Biomed., 2023, 231, 107430, DOI: 10.1016/j.cmpb. 2023.107430.
  8. Clayton J.D., Modeling lung tissue dynamics and injury under pressure and impact loading, Biomech. Model Mechanobiol., 2020, 19 (6), 2603–2626.
  9. Clemedson C., Jönsson A., Transmission and Reflection of High Explosive Shock Waves in Bone, Acta Physiol. Scand., 1961, 51, 47–61.
  10. Cooper G.J., Townend D.J., Cater S.R., Pearce B.P., The role of stress waves in thoracic visceral injury from blast loading: Modification of stress transmission by foams and high-density materials, J. Biomech., 1991, 24 (5), 273–285.
  11. Fung Y.C., Yen R.T., Tao Z.L., Liu S.Q., A hypothesis on the mechanism of trauma of lung tissue subjected to impact load, J. Biomech. Eng., 1988, 110 (1), 50–56.
  12. Greer A.D., Numerical Modeling for the Prediction of Primary Blast Injury to the Lung, Dissertation, The University of Waterloo, 2007.
  13. Grimal Q., Naili S., Watzky A., A study of impact wave propagation in the thorax, Mech. Res. Commun., 2002, 29 (2), 73–80.
  14. Grimal Q., Watzky A., Naili S., A one-dimensional model for the propagation of transient pressure waves through the lung, J. Biomech., 2002, 35 (8), 1081–1089.
  15. Hsu Y., Ho K., Chan P., Anthropomorphic Blast Test Device for Primary Blast Injury Risk Assessment, Mil. Med., 2020, 185 (Suppl. 1), 227–233.
  16. Huang J.D., Yang Z.H., Wang Z.G., Morphological changes of the lungs after blast, shell-fragment, and blast-fragment combined injuries in dogs, Journal of Army Medical University, 1992, 14 (2), 155–158.
  17. Jiang J.X., Zeng L., Advance of protection and mechanism of lung blast injury, Journal of Army Medical University, 2022, 44 (5), 395–398.
  18. Josey T., Investigation of Blast Load Characteristics on Lung Injury, Dissertation, The University of Waterloo, 2010.
  19. Kang J.Y., Wang J.M., Yu Y., M., Li B.C., Chen J., Liu H., Biological Effect and Numerical Simulation Study of Complex Blast Wave, Journal of Army Medical University, 2011, 33 (2), 173–176.
  20. Lauv. K., Viano D.C., Influence of impact velocity and chest compression on experimental pulmonary injury severity in rabbits, J. Trauma, 1981, 21 (12), 1022–1028.
  21. Lewis B.T., Herr K.D., Hamlin S.A., Henry T., Little B.P., Naeger D.M., Hanna T.N., Imaging Manifestations of Chest Trauma, Radiographics, 2021, 41 (5), 1321–1334.
  22. Li X., Chen L., Zhang Q.M., Zhang A.F., Ma G., Research on shock compression test of pigs lower limb, China Measurement and Test, 2016, 42 (10), 63–67.
  23. Macfadden L., Chan P., Ho K., Stuhmiller J., A model for predicting primary blast lung injury, J. Trauma Acute Care Surg., 2012, 73 (5), 1121–1129.
  24. Marro A., Chan V., Hass B., Ditkofsky N., Blunt chest trauma: classification and management, Emerg. Radiol., 2019, 26 (5), 557–566.
  25. Mayorga M.A., The pathology of primary blast overpressure injury, Toxicology, 1997, 121 (1), 17–28.
  26. Nie J., Lv X., Huang X., Li K., Li G., Pedestrian dynamic response and injury risk in high speed vehicle crashes, Acta Bioeng. Biomech., 2022, 24 (3), 56–57.
  27. Rice D., Sound speed in pulmonary parenchyma, J. Appl. Physiol., 1983, 54 (1), 304–308.
  28. Roberts S.B., Chen P.H., Electrostatic analysis of the human thoracic skeleton, J. Biomech., 1970, 3 (6), 527–545.
  29. Scott T.E, Kirkman E., Haque M., Gibb I.E., Mahoney P., Hardman J.G., Primary blast lung injury – a review, Br. J. Anaesth., 2017, 118 (3), 311–316.
  30. Shen J., Roth S., Effect of geometrical and mechanical parameters of ribs submitted to high velocity impact. A numerical investigation, Mechanics of Advanced Materials Structures, 2022, 29 (25), 4096–4109.
  31. Stottmeister A., Von Ramin M., Schneider J.M., On models of blast overpressure effects to the thorax, SN Appl. Sci., 2020, 2 (12), 2076.
  32. Stuhmiller J.H., Ho K.H., Van der Vorst M.J., Dodd K.T., Fitzpatrick T., Mayorga M., A model of blast overpressure injury to the lung, J. Biomech., 1996, 29 (2), 227–234.
  33. Tan X.G., Przekwas A.J., Gupta R.K., Computational modeling of blast wave interaction with a human body and assessment of traumatic brain injury, Shock Waves, 2017, 27, 889–904.
  34. Tang F., Research on Human Torso Injury and Protection under Blast wave and Fragment, Dissertation, Beijing Institute of Technology, 2019.
  35. Thom C.G., Soft Materials under Air Blast Loading and Their Effect on Primary Blast Injury, Dissertation, The University of Waterloo, 2009.
  36. Wagner R.B., Jamieson P.M., Pulmonary contusion. Evaluation and classification by computed tomography, Surg. Clin. North. Am., 1989, 69 (1), 31–40
  37. Wang B., He Y.Y., Nie B.B., Xu S.C., Zhang J.H., Abdominal injury of vehicle occupant in underbody blast events, Journal of Jilin University, 2021, 51 (3), 792–798.
  38. Wang B., Yang J.B., Yao L.G., He Y.Y., Lyu H.Y., Tang J.S., Xu S.C., Zhang J.H., Blast injuries to human lung induced by blast shock waves, Explosion and Shockwaves, 2022, 42 (12), 13–21.
  39. Watts S., Kirkman E., Bieler D., Bjarnason S., Franke A., Gupta R., Leggieri M.J. Jr., Orru H., Ouellet S., Philippens M., Sarron J.-C., Skriudalen S., Teland J.A., Risling M., Cernak I., Guidelines for using animal models in blast injury research, J. R. Army Med. Corps., 2019, 165 (1), 38–40.
  40. Yen R.T., Fung. C., Ho H.H., Butterman G., Speed of stress wave propagation in lung, J. Appl. Physiol., 1986, 61 (1), 701–705.
  41. Zhang S.X., Wang P.A., Liu Z.J., Atlas of Chinese Visible Human (Male and Female), China Science Publishing and Media, Ltd., 2004.
DOI: https://doi.org/10.37190/abb-02427-2024-04 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 45 - 58
Submitted on: Mar 29, 2024
Accepted on: Jun 21, 2024
Published on: Jan 28, 2025
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Zhuangqing Fan, Shuangbo Zhang, Huifang Gan, Jing Chen, Changkai Dai, Benwen Zhang, Fangyun Lu, Jinlong Qiu, Jianyi Kang, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.