References
- B
ailey A., Chirstopher J., Brozoski F., Salzar R., Post mortem human surrogate injury response of the pelvis and lower extremities to simulated underbody blast, Ann. Biomed. Eng., 2015, 43 (8), 1907–1917. - B
elmont P., Goodman G., Zacchilli M., Posner M., Evans C., Owens B., Incidence and epidemiology of combat injuries sustained during “the surge” portion of operation Iraqi freedom by a U.S. army brigade combat team, J. Trauma, 2010, 68 (1), 204–210. - C
omstock S., Pannell D., Talbot M., Compton L., Withers N., Tien H., Spinal injuries after improvised explosive device incidents: implications for tactical combat casualty care, J. Trauma, 2011, 71 (5, Suppl. 1), S413–17. - D
ooley C., Wester B., Wing I., Voo L., Armiger R., Merkle A., Response of the thoracolumbar vertebral bodies to high-rate compressive loading, Biomed. Sci. Instrum., 2013, 49, 172–179. - H
uang J., Huang C., Mo F., Analysis of foot-ankle-leg injuries in various under-foot impact loading environments with a human active lower limb model, J. Biomed. Eng., 2022, 144 (1), 011012. - L
i G., Ma H., Guan T., Gao G., Predicting safer vehicle front-end shapes for pedestrian lower limb protection via a numerical optimization framework, Int. J. Auto. Tech.-Kor., 2020, 21 (3), 749–756. - L
i G., Meng H., Liu J., Zou D., Li K., A novel modeling approach for finite element human body models with high computational efficiency and stability: application in pedestrian safety analysis, Acta Bioeng. Biomech., 2021, 21 (2), 21–30. - L
iu X.R., Tian X.G., Lu T., Liang B., Sandwich plates with functionally graded metallic foam cores subjected to air blast loading, Int. J. Mech. Sci., 2014, 84, 61–72. - LSTC. LS-DYNA keyword user’s manual, version 971. Liver+ more Software Technology Corporation Livermore, United States of America. 2007.
- M
a H., Mao Z., Li G., Yan L., Mo F., Could an isolated human body lower limb model predict leg biomechanical response of Chinese pedestrians in vehicle collisions?, Acta Bio-eng. Biomech., 2020, 22 (3), 117–129. - M
o F., Li F., Behr M., Xiao Z., Zhang G., Du X., A lower limb-pelvis finite element model with 3D active muscles, Ann. Biomed. Eng., 2018, 46, 86–96. - M
o F., Luo D., Tan Z., Shang B., Zhou D., A human active lower limb model for Chinese pedestrian safety evaluation, J. Bionic. Eng., 2021, 18 (4), 872–886. - O
tt K., Drewry D., Luongo M., Andrist J., Armiger R., Titus J., Demetropoulos C., Comparison of human surrogate responses in underbody blast loading conditions, J. Biomech. Eng., 2020, 142 (9), 091910. - P
andelani T., Carpanen D., Masouros S., Evaluating pelvis response during simulated underbody blast loading, J. Biomech. Eng., 2024, 146 (2), 024501. - P
ossely D., Blair J., Freedman B., Schoenfeld A., Lehman R., Hsu J., The effect of vehicle protection on spine injuries in military conflict, J. Spine, 2012, 12, 843–848. - R
upp J., Zaseck L., Miller C., Bonifas A., Reed M., Sherman D., Cavanaugh J., Ott K., Demetropoulos C., Whole body PMHS response in injurious experimental accelerative loading events, Ann. Biomed. Eng., 2021, 49 (11), 3031–3045. - S
choenfeld A., Goodman G., Belmont Jr, P., Characterization of combat-related spinal injuries sustained by a U.S. army brigade combat team during operation Iraqi freedom, J. Spine, 2012, 12, 771–776. - S
omasundaram K., Sherman D., Begeman P., Ciarelli T., Mccarty S., Kochkodan J., Demetropoulos C., Cavanaugh J., Mechanisms and timing of injury to the thoracic, lumbar and sacral spine in simulated underbody blast PMHS impact tests, J. Mech. Behav. Biomed. Mater., 2021, 116, 104271. - S
omasundaram K., Zhang L., Sherman D., Begeman P., Lyu D., Cavanaugh J., Evaluating thoracolumbar spine response during simulated underbody blast impact using a total human body finite element model, J. Mech. Behav. Bio-med. Mater., 2019, 100, 103398. - S
tech E., Payne P., Dynamic models of the human body, AMRL-TR-66, l–9, 1969. - Y
oganandan N., Humm J., Baisden J., Moore J., Pintar F., Wassick M., Barnes D., Loftis K., Temporal corridors of forces and moments, and injuries to pelvis-lumbar spine in vertical impact simulating underbody blast, J. Biomech., 2023, 150, 111490. - Y
oganandan N., Moore J., Arun M., Pintar F., Dynamic responses of intact post mortem human surrogates from inferior-to-superior loading at the pelvis, Stapp Car Crash J., 2014, 58, 123–143. - W
eaver C., Merkle A., Stitzel J., Pelvic response of a total human body finite element model during simulated under body blast impacts, ASCE-ASME J. Risk U. B., 2021, 7 (2), 021004. - W
u T., Kim T., Bollapragada V., Poulard D., Chen H., Evaluation of biofidelity of THUMS pedestrian model under a whole – body impact conditions with a generic sedan buck, Traffic Inj. Prev., 2017, 18, S148–S154. - Z
hang J., Merkle A., Carneal C., Armiger R., Roberts J., Effects of torso-borne mass and loading severity on early response of the lumbar spine under high-rate vertical loading, Proceedings of the IRCOBI Conference, 2013, 111–123. - Z
hang N., Zhao J., Study of compression-related lumbar spine fracture criteria using a full body FE human model, Proceeding of the 23rd International Technical Conference on the Enhanced Safety of Vehicles (ESV), Seoul, Korea, 2013, Paper No. 13-0288.