References
- B
arros M.A.M.D., Manzoli O.L., Bitencourt L.A.G., Computational modeling of cracking in cortical bone microstructure using the mesh fragmentation technique, Arch. Appl. Mech., 2024. - B
ourdin B., Francfort G.A., Marigo J.J., Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 2000, 48, 797–782. - B
ouaziz O., Pardoen T., Phase field modeling of fracture: A powerful tool to understand material failure, J. Mech. Phys. Solids, 2019, 123, 104–144. - C
arlsson J., Braesch -Andersen A., Ferguson S.J., Isaksson P., Fracture in porous bone analyses with a numerical phase-field dynamical model, J. Mech. Behav. Biomed. Mater., 2023, 139, 105659. - C
han K.S., Chan C.K., Nicolella D.P., Relating crack-tip deformation to mineralization and fracture resistance in human femur cortical bone, Bone, 2009, 45, 427–434. - D
ominguez V.M., Agnew A.M., Microdamage as a bone quality component: practical guidelines for the two-dimensional analysis of linear microcracks in human cortical bone, JBMR Plus., 2019, 3 (6), 1–15. - D
a D., Qian X., Fracture resistance design through biomimicry and topology optimization, Extreme Mech. Lett., 2020, 40, 100890. - D
onaldson F., Ruffoni D., Schneider P., Levchuk A., Zwahlen A., Modeling microdamage behavior of cortical bone, Biomech. Model. Mechanobiol., 2014, 13 (6), 1227–1242. - G
iner E., Belda R., Arango C., Vercher -Martinez A., Calculation of the critical energy release rate Gc of the cement line in cortical bone combining experimental tests and finite element models, Eng. Fract. Mech., 2017, 184, 168–182. - G
anesh T., Laughrey L.E., Niroobakhsh M., Nuria L.C., Multiscale finite element modeling of mechanical strains and fluid flow in osteocyte lacunocanalicular system, Bone, 2020, 137, 115328. - G
ustafsson A., Khayyeri H., Wallin M., Isaksson H., An interface damage model that captures crack propagation at the microscale in cortical bone using XFEM, J. Mech. Behav. Biomed. Mater., 2019, 90, 556–565. - G
ustafsson A., Wallin M., Khayyeri H., Isaksson H., Crack propagation in cortical bone is affected by the characteristics of the cement line: a parameter study using an XFEM interface damage model, Biomech. Model. Mechan., 2019, 18, 1247–1261. - H
oenig T., Ackerman K.E., Beck B.R., Bouxsein M.L., Burr D.B., Bone stress injuries, Nat. Rev. Dis. Primers, 2022, 26. - I
ezzi G., Mangano C., Barone A. et al., Jawbone remodeling: a conceptual study based on synchrotron high-resolution tomography, Sci. Rep., 2020, 3777. - J
osephson T.O., Moore J.P., Maghami E., Freeman T.A. Najafi A.R., Computational study of the mechanical influence of lacunae and perilacunar zones in cortical bone microcracking, J. Mech. Behav. Biomed. Mater., 2022, 126, 105029. - J
ankowski K., Pawlikowski M., Barcz K., Some aspects related to the indentation-based viscoelastic modelling of trabecular bone tissue, Acta Bioeng. Biomech., 2022, 24 (3), 169–177. - J
i C.H., Zhang L., Wang Y., Lin B., Bai X.L., Yun S.Y., He B.N., The influence of different shaped osteocyte lacunae on microcrack initiation and propagation, Clin. Biomech., 2023, 108, 106072. - K
ola S.K., Begonia M.T., Tiede -Lewis L.M., Laughrey L.E., Dallas S.L., Johnson M.L., Ganesh T., Osteocyte lacunar strain determination using multiscale finite element analysis, Bone Rep., 2020, 100277. - K
opernik M., Dyrda K., Kurytka P., Major R., Discrete phase model of blood flow in a roughness microchannel simulating the formation of pseudointima, Acta Bioeng. Biomech., 2022, 24 (1), 131–144. - L
i S., Abdel -Wahab A., Demirci E., Silberschmidt V.V., Fracture process in cortical bone: X-FEM analysis of microstructure models, Int. J. Fract., 2013, 184, 43–55. - L
i J., Gong H., Fatigue behavior of cortical bone: a review, Acta Mech. Sin., 2021, 37, 516–526. - M
olnar G., Gravouil A., 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture, J. Finite Elem. Anal. Des., 2017, 130, 27–38. - M
iehe C., Hofacker M., Welschinger F., A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, J. Comp. Methods Appl. Mech. Eng., 2010, 199, 2765–2778. - M
aghami E., Josepheon T.O., Moore J.P., Rwzaee T., Freeman T.A., Karim L., Najafi A.R., Fracture behavior of human cortical bone: Role of advanced glycation end-products and microstructural features, J. Biomech., 2021, 125, 110600. - M
oriishi T., Komori T., Osteocytes: Their lacunocanalicular structure and mechanoresponses, Int. J. Mol. Sci., 2022, 23, 4373. - R
eilly G.C., Observations of microdamage around osteocyte lacunae in bone, J. Biomech., 2000, 1131–1134. - R
ux C.J., Vahidi G., Darabi A., Cox L.M., Heveran C.M., Perilacunar bone tissue exhibits sub-micrometer modulus gradation which depends on the recency of osteocyte bone formation in both young adult and early-old-age female C57Bl/6 mice, Bone, 2022, 157, 116327. - W
ittig N.K., Laugesen M., Birkbak M.E., Bach -Gansmo F.L., Pacureanu A., Bruns S., Wendelboe M.H., Brüel A., Sørensen H.O., Thomsen J.S., Birkedal H., Canalicular Junctions in the Osteocyte Lacuno-Canalicular Network of Cortical Bone, ACS Nano, 2019, 13 (6), 6421–6430. - S
alhotra A., Shah H.N., Levi B., Longake M.T., Mechanisms of bone development and repair, Nat. Rev. Mol. Cell Biol., 2020, 696–711. - S
ang W., Ural A., Quantifying how altered lacunar morphology and perilacunar tissue properties influence local mechanical environment of osteocyte lacunae using finite element modeling, J. Mech. Behav. Biomed. Mater., 2022, 135, 105433. - V
oide R., Schneider P., Stauber M., Harry G.H., Stampanonoi M., The importance of murine cortical bone microstructure for microcrack initiation and propagation, Bone, 2011, 1186–1193. - V
ashishth D., Tanner K.E., Bonfield W., Contribution, development and morphology of microcracking in cortical bone during crack propagation, J. Biomech., 2000, 33, 1169–1174. - V
ashishth D., Verborgt O., Divine G., Fyhrie D.P., Decline in osteocyte lacunar density in human cortical bone is associated with accumulation of microcracks with age, Bone, 2000, 375–380. - V
erbruggen S.W., Vaughan T.J., Mcnamara L.M., Strain amplification in bone mechanobiology: a computational investigation of the in vivo mechanics of osteocytes, J. R. Soc. Interface, 2012, 75, 2735–2744. - W
entzell S., Nesbitt R.S., Maclone J., Kotha S., Measurement of lacunar bone strains and crack formation during tensile loading by digital volume correlation of second harmonic generation images, J. Mech. Behav. Biomed. Mater., 2016, 148–156. - W
ang L., You X., Zhang L., Zhang C.Q., Mechanical regulation of bone remodeling, Bone Res., 2022, 16. - Y
u B., Pacureanu A., Olivier C., Cloetens P., Peyrin F., Assessment of the human bone lacuno-canalicular network at the nanoscale and impact of spatial resolution, Sci. Rep., 2020, 4567. - Y
u X., Wang R., Dong C., Ji J.Y., Zhen X.X., 3D implementation of push-out test in ABAQUS using the phase-field method, J. Mech. Sci. Technol., 2023, 37, 1731–1745. - Z
hang X., Wang J., Phase field modeling of crack initiation and propagation in composite materials, Compos. Part B: Eng., 2021, 206, 108691.