Have a personal or library account? Click to login
Optimal parameters for the efficient microwave ablation of liver tumor from the 3D-IRCADb-01 database Cover

Optimal parameters for the efficient microwave ablation of liver tumor from the 3D-IRCADb-01 database

Open Access
|Apr 2024

References

  1. Ananthakrishnan A., Gogineni V., Saeian K., Epidemiology of Primary and Secondary Liver Cancers, Semin. Intervent. Radiol., 2006, 23 (1), 47–63.
  2. Balogh J., Victor D., Asham E.H., Burroughs S.G., Boktour M., Saharia A., Li X., Ghobrial R.M., Monsour H.P. Jr., Hepatocellular carcinoma: A review, J. Hepatocell. Car-cinoma, 2016, 3, 41–53.
  3. Villanueva A., Hepatocellular Carcinoma, N. Engl. J. Med., 2019, 380, 1450–1462.
  4. Linn Y.L., Chee M.Y., Koh Y.X., Teo J.Y., Cheow P.C., C how P.K.H., Chan C.Y., Chung A.Y.F., Ooi L.L.P.J., G oh B.K.P., Actual 10-year survivors and 10-year recurrence free survivors after primary liver resection for hepatocellular carcinoma in the 21st century: a single institution contempo-rary experience, J. Surg. Oncol., 2021, 123 (1), 214–221.
  5. Chen J.G., Zhu J., Zhang Y.H., Chen Y.S., Ding L.L., C hen H.Z., Shen A.G., Wang G.R., Liver Cancer Survival: A Real World Observation of 45 Years with 32,556 Cases, Journal of Hepatocellular Carcinoma, 2021, 8, 1023–1034.
  6. Li Y., Zhang R., Xu Z., Wang Z., Advances in Nanolipo-somes for the Diagnosis and Treatment of Liver Cancer, Int. J. Nanomedicine, 2022, 17, 909–925.
  7. Koulouris A., Tsagkaris C., Spyrou V., Pappa E., Troullinou A., Nikolaou M., Hepatocellular Carcinoma: An Overview of the Changing Landscape of Treatment Options, J. Hepatocell. Carcinom, 2021, 8, 387–401.
  8. Xu X.L., Liu X.D., Liang M., Luo B.M., Radiofrequency ablation versus hepatic resection for small hepatocellular carcinoma: systematic review of randomized controlled trials with meta-analysis and trial sequential analysis, Radiology, 2018, 287 (2), 461–472.
  9. Glassberg M.B., Ghosh S., Clymer J.W., Wright G.W.J., Ferko N., Amaral J.F., Microwave ablation compared with hepatic resection for the treatment of hepatocellular carcinoma and liver metastases: A systematic review and meta-analysis, World J. Surg. Oncol., 2019, 17 (1), 98.
  10. Reig M., Forner A., Rimola J., Ferrer-Fàbrega J., Burrel M., Garcia-Criado Á., Kelley R.K., Galle P.R., Mazzaferro V., Salem R., Sangro B., Singal A.G., Vogel A., Fuster J., Ayuso C., Bruix J., BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update, J. Hepatol., 2022, 76 (3), 681–683.
  11. Xu H., Zhang Q., Tan Y.L., Zhang Y., Wei J.Z., Wang L.L., Xie B., Efficacy of microwave ablation and entecavir as a com-bination treatment for primary liver cancer and their effects on hepatitis B virus and liver function, All Life, 2020, 13 (1), 524–531.
  12. Humphrey S., Newcomer J.B., Raissi D., Gabriel G., Percutaneous microwave ablation for early-stage intrahepatic cholangiocarcinoma: A single-institutional cohort, J. Clin. Im-aging Sci., 2024, 13, 4.
  13. Curto S., Taj-Eldin M., Fairchild D., Prakash P., Microwave ablation at 915 MHz vs 2.45 GHz: A theoretical and ex-perimental investigation, Med. Phys., 2015, 42 (11), 6152–6161.
  14. Karampatzakis A., Kühn S., Tsanidis G., Neufeld E., Samaras T., Kuster N., Antenna design and tissue parameters considerations for an improved modelling of microwave ablation in the liver, Phys. Med. Biol., 2013, 58 (10), 3191–3206.
  15. Prakash P., Converse M.C., Webster J.G., Mahvi D.M., An optimal sliding choke antenna for hepatic microwave abla-tion, IEEE Trans. Bio-Med. Eng., 2009, 56 (10), 2470–2476.
  16. Yang D., Bertram J.M., Converse M.C., O’Rourke A.P., Webster J.G., Hagness S.C., Will J.A., Mahvi D.M., A float-ing sleeve antenna yields localized hepatic microwave ablation, IEEE Trans. Bio-Med. Eng., 2006, 53 (5), 533–537.
  17. Sun Y.Y., Cheng Z.G., Dong L., Zhang G.M., Wang Y., Liang P., Comparison of temperature curve and ablation zone between 915-and 2450 MHz cooled-shaft microwave antenna: Results in ex vivo porcine livers, Eur. J. Radiol., 2012, 81 (3), 553–557.
  18. Ge M., Jiang H., Huang X., Zhou Y., Zhi D., Zhao G., Chen Y., Wang L., Qiu B., A multi-slot coaxial microwave antenna for liver tumor ablation, Phys. Med. Biol., 2018, 63 (17), 175011.
  19. Wang Q., Yan H., Guo M., Meng L., Long Z., Long Y., Yang H., Three-dimensional finite element analysis of a novel interzygapophyseal fusion device for lower cervical spine, Acta Bioeng. Biomech., 2022, 24 (2), 187–193.
  20. Liu P., Wan J., Liu W., Zhao Y., Yan S., Jiang W., Liu H., Numerical analysis of the effects of canal wall-up and canal wall-down mastoidectomy on the sound transmission characteristics of human ears, Acta of Bioengineering and Biomechanics, 2023, 25 (2), 132–145.
  21. Su P., Yang Y., Zhang L., Huang L., Biomechanical simulation of needle insertion into cornea based on distortion energy failure criterion, Acta Bioeng. Biomech., 2016, 18 (1), 65–75.
  22. Servin F., Collins J.A., Heiselman J.S., Frederick-Dyer K.C., Planz V.B., Geevarghese S.K., Brown D.B., Jarnagin W.R., Miga M.I., Simulation of Image-Guided Microwave Ablation Therapy Using a Digital Twin Computational Model, IEEE Open Journal of Engineering in Medicine and Biology, 2024, 5, 107–124.
  23. Gorman J., Tan W., Abraham J., Numerical Simulation of Microwave Ablation in the Human Liver, Processes, 2022, 10 (2), 361.
  24. Qin Z., Balasubramanian S.K., Wolkers W.F., Pearce J.A., Bischof J.C., Correlated parameter fit of arrhenius model for thermal denaturation of proteins and cells, Ann. Biomed. Eng., 2014, 42 (12), 2392–2404.
  25. Sheu T.W., Chou C.W., Tsai S.F., Liang P.C., Three-dimensional analysis for radio-frequency ablation of liver tumor with blood perfusion effect, Computer Methods in Biomechanics and Biomedical Engineering, 2005, 8 (4), 229–240.
  26. Ortega-Palacios R., Trujillo-Romero C.J., Cepeda-Rubio M.F.J., Leija L., Vera Hernández A., Heat Transfer Study in Breast Tumor Phantom during Microwave Ablation: Modeling and Experimental Results for Three Different Antennas, Electronics, 2020, 9 (3), 535.
  27. Selmi M., Bin Dukhyil A.A., Belmabrouk H., Numerical Analysis of Human Cancer Therapy Using Microwave Ablation, Appl. Sci., 2020, 10 (1), 211.
  28. Tehrani M.H.H., Soltani M., Kashkooli F.M., Raahemifar K., Use of microwave ablation for thermal treatment of solid tumors with different shapes and sizes – A computational approach, PLoS ONE, 2020, 15 (6), e0233219.
  29. Radmilović-Radjenović M., Bošković N., Sabo M., Radjenović B., An Analysis of Microwave Ablation Parameters for Treatment of Liver Tumors from the 3D-IRCADb-01 Data-base, Biomedicines, 2022, 10 (7), 1569.
  30. 3D-IRCADb database, https://www.ircad.fr/research/3dircadb/ [Accessed: 25 January 2024].
  31. Bošković N., Radmilović-Radjenović M., Radjenović B., Finite Element Analysis of Microwave Tumor Ablation Based on Open-Source Software Components, Mathematics, 2023, 11 (12), 2654.
  32. Radmilović-Radjenović M., Radjenović D., Radjenović B., Finite element analysis of the effect of microwave ablation on the liver, lung, kidney, and bone malignant tissues, Europhys. Lett., 2021, 136, 1363500.
  33. Miaskowski A., Gas P., Numerical Estimation of SAR and Temperature Distributions inside Differently Shaped Female Breast Tumors during Radio-Frequency Ablation, Materials, 2023, 16 (1), 223.
  34. Mercado Montoya M., Gomez Bustamante T., Berjano E., Mickelsen S.R., Daniels J.D., Hernandez Arango P., Schieber J., Kulstad E., Proactive esophageal cooling protects against thermal insults during high-power short-duration radiofrequency cardiac ablation, International Journal of Hyperthermia, 2022, 39 (1), 1202–1212.
DOI: https://doi.org/10.37190/abb-02406-2024-04 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 47 - 54
Submitted on: Feb 24, 2024
Accepted on: Apr 22, 2024
Published on: Apr 22, 2024
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Nikola Bošković, Branislav Radjenovic, Marija Radmilović-Radjenović, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.