References
- B
orucka A., Ciszkiewicz A., A Planar Model of an Ankle Joint with Optimized Material Parameters and Hertzian Contact Pairs, Materials, 2019, 12 (16), 2621, DOI: 10.3390/ma12162621. - B
rockett C.L., Chapman G.J., Biomechanics of the ankle, Orthopaedics and Trauma, 2016, 30 (3), 232–238, DOI: 10.1016/j.mporth.2016.04.015. - B
utton K.D., Wei F., Meyer E.G., Haut R.C., Specimen- Specific Computational Models of Ankle Sprains Produced in a Laboratory Setting, J. Biomech. Eng., 2013, 135 (4), 041001, DOI: 10.1115/1.4023521. - C
iszkiewicz A., Analyzing Uncertainty of an Ankle Joint Model with Genetic Algorithm, Materials, 2020, 13 (5), 1175, DOI: 10.3390/ma13051175. - C
iszkiewicz A., Arbitrary Prestrain Values for Ligaments Cause Numerical Issues in a Multibody Model of an Ankle Joint, Symmetry, 2022, 14 (2), 261, DOI: 10.3390/sym14020261. - F
orlani M., Sancisi N., Parenti -Castelli V., A Three-Dimensional Ankle Kinetostatic Model to Simulate Loaded and Unloaded Joint Motion, J. Biomech. Eng., 2015, 137 (6), 061005, DOI: 10.1115/1.4029978. - F
unk J.R., Hall G.W., Crandall J.R., Pilkey W.D., Linear and Quasi-Linear Viscoelastic Characterization of Ankle Ligaments, J. Biomech. Eng., 2000, 122 (1), 15–22. - I
aquinto J.M., Wayne J.S., Computational Model of the Lower Leg and Foot/Ankle Complex: Application to Arch Stability, J. Biomech. Eng., 2010, 132 (2), 021009, DOI: 10.1115/1.4000939. - K
lekiel T., BĘdzi Ński R., Finite Element Analysis Of Large Deformation Of Articular Cartilage In Upper Ankle Joint Of Occupant In Military Vehicles During Explosion, Arch. Metall. Mater., 2015, 60 (3), 2115–21, DOI: 10.1515/amm-2015-0356. - L
iacouras P.C., Wayne J.S., Computational Modeling to Predict Mechanical Function of Joints: Application to the Lower Leg With Simulation of Two Cadaver Studies, J. Biomech. Eng., 2007, 129 (6), 811–817, DOI: 10.1115/1.2800763. - M
aas S.A., Erdemir A., Halloran J.P., Weiss J.A., A general framework for application of prestrain to computational models of biological materials, J. Mech. Behav. Biomed., 2016, 61, 499–510, DOI: 10.1016/j.jmbbm.2016.04.012. - M
achado M., Flores P., Claro J.C.P., Ambrósio J., Silva M., Completo A., Lankarani H.M., Development of a planar multibody model of the human knee joint, Nonlinear Dyn., 2010, 60 (3), 459–478, DOI: 10.1007/s11071-009-9608-7. - O
zeki S., Yasuda K., Kaneda K., Yamakoshi K., Yamanoi T., Simultaneous Strain Measurement With Determination of a Zero Strain Reference for the Medial and Lateral Ligaments of the Ankle, Foot Ankle Int., 2002, 23 (9), 825–832, DOI: 10.1177/107110070202300909. - R
odrigues da Silva M., Marques F., Tavares da Silva M., Flores P., A new skeletal model for the ankle joint complex, Multibody Syst. Dyn., 2024, 60 (1), 27–63, DOI: 10.1007/s11044-023-09955-z. - R
oupa I., Da Silva M.R., Marques F., Gonçalves S.B., Flores P., Da Silva M.T., On the Modeling of Biomechanical Systems for Human Movement Analysis: A Narrative Review, Arch. Computat. Methods Eng., 2022, 29 (7), 4915–4958, DOI: 10.1007/s11831-022-09757-0. - S
ilva M., Freitas B., Andrade R., Carvalho Ó., Renjewski D., Flores P., Espregueira -Mendes J., Current Perspectives on the Biomechanical Modelling of the Human Lower Limb: A Systematic Review, Arch. Computat. Methods Eng., 2021, 28 (2), 601–636, DOI: 10.1007/s11831-019-09393-1. - S
ybilski K., Mazurkiewicz Ł., Jurkoj Ć J., Michnik R., Ma Łachowski J., Evaluation of the effect of muscle forces implementation on the behavior of a dummy during a headon collision, Acta Bioeng. Biomech., 2021, 23 (4), 137–147 DOI: 10.37190/ABB-01976-2021-04. - T
akabayashi T., Edama M., Inai T., Tokunaga Y., Kubo M., Influence of sex and knee joint rotation on patellofemoral joint stress, Acta Bioeng. Biomech., 2022, 24 (3), 161–168, DOI: 10.37190/ABB-02115-2022-03. - T
akabayashi T., Mutsuaki E., Takuma I., Masayoshi K., Effect of change in patellofemoral joint contact area by the decrease in vastus medialis muscle activation on joint stress, Acta Bioeng. Biomech., 2023, 25 (2), 41–47, DOI: 10.37190/ABB-02234-2023-02. - V
an Der Walt S., Colbert S.C., Varoquaux G., The NumPy Array: A Structure for Efficient Numerical Computation, Comput. Sci. Eng., 2011, 13 (2), 22–30, DOI: 10.1109/MCSE.2011.37. - W
atanabe R., Mishima H., Takehashi H., Wada H., Totsuka S., Nishino T., Yamazaki M., Hyodo K., Stress analysis of total hip arthroplasty with a fully hydroxyapatite- coated stem: comparing thermoelastic stress analysis and CT-based finite element analysis, Acta Bioeng. Biomech., 2022, 24 (2), 47–54, DOI: 10.37190/ABB-01994-2021-01. - W
ei F., Braman J.E., Weaver B.T., Haut R.C., Determination of dynamic ankle ligament strains from a computational model driven by motion analysis based kinematic data, Journal of Biomechanics, 2011, 44 (15), 2636–41, DOI: 10.1016/j.jbiomech.2011.08.010. - W
ei F., Hunley S.C., Powell J.W., Haut R.C., Development and Validation of a Computational Model to Study the Effect of Foot Constraint on Ankle Injury due to External Rotation, Ann. Biomed. Eng., 2011, 39 (2), 756–65, DOI: 10.1007/s10439-010-0234-9.