Have a personal or library account? Click to login
Virtual modelling of the impact of torsional loading on osteoporotic vertebrae buckling Cover

Virtual modelling of the impact of torsional loading on osteoporotic vertebrae buckling

Open Access
|Apr 2024

References

  1. Ayturk U., Puttlitz C., Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine, Comput. Methods Biomech. Biomed. Eng., 2011, 14, 695–705.
  2. Blanchard R., Morin C., Malandrino A. et al., Patient-specific fracture risk assessment of vertebrae: A multiscale approach coupling X-ray physics and continuum micromechanics, Int. J. Numer. Method. Biomed. Eng., 2016, 32, 1–36.
  3. Chabarova O., Alekna V., Kaèianauskas R., Ardatov O., Finite element investigation osteoporotic lumbar L1 vertebra buckling in a presence of torsional load, Mechanics, 2017, 23, 326–333.
  4. Chabarova O., Kaèianauskas R., Alekna V., Buckling of osteoporotic lumbar: finite element analysis: research article, Research in Medical and Engineering Sciences, 2019, 8 (2), DOI: 10.31031/RMES.2019.08.000683.
  5. Chabarova O., Numerical investgation of the effect of bone tissue pathology on human spine stability, Dissertation, Vilnius Gediminas Technical University, 2020.
  6. Chotai S., Gupta R., Pennings J.S. et al., Frailty and Sarcopenia: Impact on Outcomes Following Elective Degenerative Lumbar Spine Surgery, Spine (Phila, Pa 1976), 2022, 47, 1410–1417, DOI: https://doi.org/10.1097/BRS.0000000000004384.
  7. Diamond T.H., Clark W.A., Kumar S.V., Histomorphometric analysis of fracture healing cascade in acute osteoporotic vertebral body fractures, Bone, 2007, 40, 775–780.
  8. Du H.G., Liao S.H., Jiang Z. et al., Biomechanical analysis of press-extension technique on degenerative lumbar with disc herniation and staggered facet joint, Saudi Pharm. J., 2016, 24, 305–311.
  9. Finley S.M., Brodke D.S., Spina N.T. et al., FEBio finite element models of the human lumbar spine, Comput. Methods Biomech. Biomed. Engin., 2018, 21, 444–452, DOI: https://doi.org/10.1080/10255842.2018.1478967.
  10. Garges K.J., Nourbakhsh A., Morris R. et al., A Comparison of the Torsional Stiffness of the Lumbar Spine in Flexion and Extension, J. Manipulative. Physiol. Ther., 2008, 31, 563–569.
  11. Ghadiri M., Fracture Mechanics Analysis of Fourth Lumbar Vertebra in Method of Finite Element Analysis, Int. J. Adv. Biol. Biom. Res., 2014, 2, 2217–2224.
  12. Hamilton E.J., Ghasem-Zadeh A., Gianatti E. et al., Structural Decay of Bone Microarchitecture in Men with Prostate Cancer Treated with Androgen Deprivation Therapy, J. Clin. Endocrinol. Metab., 2010, 95, E456–E463.
  13. Huang K., Zhang J., Three-dimensional lumbar spine generation using variational autoencoder, Med. Eng. Phys., 2023, 120, 104046, DOI: https://doi.org/10.1016/J.MEDENGPHY.2023.104046.
  14. Jiang Y., Lin D., Guo X. et al., Vertebral fractures are likely to occur in lumbar vertebra in patients with osteoporosis and even in osteopenia, Jt. Bone Spine., 2018, 77, 1627–1627, DOI: https://doi.org/10.1136/annrheumdis-2018-eular.5051.
  15. Johansen J.G., Nork M., Grand F., Torsional instability of the lumbar spine, Riv. Neuroradiol., 1999, 12, 193–195.
  16. Jones A.C., Wilcox R.K., Finite element analysis of the spine: Towards a framework of verification, validation and sensitivity analysis, Med. Eng. Phys., 2008, 30, 1287–1304.
  17. Kim Y.H., Wu M., Kim K., Stress Analysis of Osteoporotic Lumbar Vertebra Using Finite Element Model with Microscaled Beam-Shell Trabecular-Cortical Structure, J. Appl. Math., 2013, 1–6.
  18. Kinzl M., Schwiedrzik J., Zysset P.K., Pahr D.H., An experimentally validated finite element method for augmented vertebral bodies, Clin. Biomech., 2013, 28, 15–22.
  19. Lan C., Kuo C., Chen C., Hu H., Finite element analysis of biomechanical behavior of whole thoraco-lumbar spine with ligamentous effect, CJM, 2013, 26–41.
  20. Lochmüller E.M., Eckstein F., Kaiser D., Zeller J.B., Landgraf J., Putz R., Steldinger R., Prediction of vertebral failure loads from spinal and femoral dual-energy X-ray absorptiometry, and calcaneal ultrasound: an in situ analysis with intact soft tissues, Bone, 1998, 23, 417–424.
  21. Loughenbury P.R., Tsirikos A.I., Gummerson N.W., Spinal biomechanics – biomechanical considerations of spinal stability in the context of spinal injury, Orthop. Trauma, 2016, 30, 369–377.
  22. Madenci E., Guven I., Fundamentals of Discretization, [in:] The Finite Element Method and Applications in Engineering Using ANSYS, Springer US, 2015, 35–74.
  23. Maknickas A., Alekna V., Ardatov O. et al., FEM-based compression fracture risk assessment in osteoporotic lumbar vertebra L1, Appl. Sci.-Basel, 2019, 9, DOI: https://doi.org/10.3390/APP9153013.
  24. Mazlan M.H., Todo M., Takano H., Yonezawa I., Finite Element Analysis of Osteoporotic Vertebrae with First Lumbar (L1) Vertebral Compression Fracture, IJAPM, 2014, 4, 267–274.
  25. Mcdonald K., Little J., Pearcy M., Adam C., Development of a Multi-Scale Finite Element Model of the Osteoporotic Lumbar Vertebral Body for the Investigation of Apparent Level Vertebra Mechanics and Micro-Level Trabecular Mechanics, K. Med. Eng. Phys., 2010, 32, 653–661.
  26. Molinari L., Falcinelli C., On the human vertebra computational modeling: a literature review, Meccanica, 2022, 57, DOI: https://doi.org/10.1007/s11012-021-01452-x.
  27. Molinari L., Falcinelli C., Gizzi A., Di Martino A., Effect of pedicle screw angles on the fracture risk of the human vertebra: A patient-specific computational model, J. Mech. Behav. Biomed. Mater., 2021, 116, 104359, DOI: https://doi.org/10.1016/J.JMBBM.2021.104359.
  28. Monteiro N.M.B., Da Silva M.P.T., Folgado J.O.M.G., Melancia J.P.L., Structural analysis of the intervertebral discs adjacent to an interbody fusion using multibody dynamics and finite element cosimulation, Multibody Syst. Dyn., 2011, 25, 245–270.
  29. Okamoto Y., Murakami H., Demura S. et al, The effect of kyphotic deformity because of vertebral fracture: a finite element analysis of a 10° and 20° wedge-shaped vertebral fracture model, The Spine Journal, 2015, 15, 713–720.
  30. Polikeit A., Nolte L.P., Ferguson S.J., Simulated influence of osteoporosis and disc degeneration on the load transfer in a lumbar functional spinal unit, J. Biomech., 2004, 37, 1061–1069.
  31. Pietruszczak S., Inglis D., Pande G.N., A fabric-dependent criterion for bone, J. Biomechanics, 1999, 32, 1071–1079.
  32. Provatidis C., Vossou C., Koukoulis I. et al., A pilot finite element study of an osteoporotic L1-vertebra compared to one with normal T-score, Comput. Methods. Biomech. Bio-med. Engin., 2010, 13.185–195, DOI: https://doi.org/10.1080/10255840903099703.
  33. Su X., Shen H., Shi W. et al., Dynamic characteristics of osteoporotic lumbar spine under vertical vibration after cement augmentation, Am. J. Transl. Res., 2017, 9, 4036–4045.
  34. Taylor D., Scaling effects in the fatigue strength of bones from different animals, J. Theor. Biology, 2000, 206, 299–306.
  35. Yang L., Dempsey M., Brennan A. et al., Ireland DXA-FRAX may differ significantly and substantially to Web-FRAX, Arch. Osteoporos., 2023, 18, 43, DOI: https://doi.org/10.1007/S11657-023-01232-Y.
  36. Yang S., Xia H., Cong M. et al., Unilateral pedicle screw fixation of lumber spine: A safe internal fixation method, Heliyon, 2022, 8, e11621, DOI: https://doi.org/10.1016/j.heliyon.2022.e11621.
  37. Zahaf S., Habib H., Mansouri B. et al., The Effect of the Eccentric Loading on the Components of the Spine, Global Journals Inc., 2016, 16, 2249–4596.
  38. Zebaze R.M., Ghasem-Zadeh A., Bohte A. et al., Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study, The Lancet, 2010, 375, 1729–1736.
  39. Zhu R., Niu W.X., Zeng Z.L. et al., The effects of muscle weakness on degenerative spondylolisthesis: A finite element study, Clin. Biomech., 2017, 41, 34–38.
  40. 3D Slicer image computing platform, Available online: https://www.slicer.org/ [Accessed: 8 January 2023].
  41. Ansys. Engineering Simulation Software, Available online: https://www.ansys.com/ [Accessed: 8 January 2023].
  42. MeshLab, Available online: https://www.meshlab.net/ [Accessed: 8 January 2023].
  43. Solidworks. 3D CAD Design Software and PDM Systems, Available online: https://www.solidworks.com/ [Accessed: 8 January 2023].
DOI: https://doi.org/10.37190/abb-02392-2024-03 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 13 - 22
Submitted on: Jan 31, 2024
Accepted on: Apr 15, 2024
Published on: Apr 15, 2024
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Olga Chabarova, Jelena Selivonec, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.