Have a personal or library account? Click to login
Usage of 3D prints with ceramic coating applied as neurological tools – preliminary research Cover

References

  1. Baran E., Erbil H., Baran E.H., Erbil H.Y., Surface modification of 3D printed PLA objects by fused deposition modeling: a review, Colloids and Interfaces, 2019, 3, 43, DOI: 10.3390/COLLOIDS3020043.
  2. Boretti A., A perspective on 3D printing in the medical field, Annals of 3D Printed Medicine, 2024, February, 13, 100138, https://doi.org/10.1016/j.stlm.2023.100138
  3. Chodun R., Skowroński L., Okrasa S., Wicher B., Nowakowska-Langier K., Zdunek K., Optical TiO2 layers deposited on polymer substrates by the Gas Injection Magnetron Sputtering technique, Applied Surface Science, 2019, 466, https://doi.org/10.1016/j.apsusc.2018.10.003
  4. Culmone C., Smit G., Breedveld P., Additive manufacturing of medical instruments: A state-of-the-art review, Additive Manufacturing, 2019, May, 27, 461–473, https://doi.org/10.1016/j.addma.2019.03.015.
  5. Domingo-Espin M., Puigoriol-Forcada J.M., Garcia-Granada A.A., Llumà J., Borros S., Reyes G., Mechanical property characterization and simulation of fused deposition modeling polycarbonate parts, Materials & Design, 2015, 83, 670–677, https://doi.org/10.1016/j.matdes.2015.06.074
  6. Frizziero L., Santi G.M., Leon-Cardenas Ch., Ferretti., Sali M., Gianese F., Crescentini N., Donnic G., Liverani A., Trisolino G., Zarantonello P., Stallone S., Di Gennaro G.L., Heat Sterilization Effects on Polymeric, FDM-Optimized Orthopedic Cutting Guide for Surgical Procedures, J. Funct. Biomater, 2021, 12 (4), 63, DOI: 10.3390/jfb12040063.
  7. George M., Aroom K., Hawes H., Gill B., Love J., 3D Printed Surgical Instruments: The Design and Fabrication Process, World Journal of Surgery, 2017, 41 (1), 314–319, https://doi.org/10.1007/s00268-016-3814-5
  8. Griffiths C.A., Howarth J., Rowbotham G.A., Rees A., Effect of build parameters on processing efficiency and material performance in fused deposition modelling, Procedia CIRP, 2016, 49, 28–32, https://doi.org/10.1016/j.procir.2015.07.024
  9. Hamdi M., Sue H.J., Effect of color, gloss, and surface texture perception on scratch and mar visibility in polymers, Materials and Design, 2015, 83, 528–535, DOI: 10.1016/j.matdes.2015.06.073.
  10. Ignell S., Kleist U., Rigdahl M., Visual percertion and measurements of texture and gloss of injection-molded plastics, Polymer Engineering and Science, 2009, 49 (2), 344–353, https://doi.org/10.1002/pen.21279
  11. Kondor S.A., Grant C.G., Liacouras P.C., Schmid M.J., Parsons L.M., Rastogi V.K., Smith L.S., Macy B., Sabart B., Macedonia C.R., On Demand Additive Manufacturing of a Basic Surgical Kit, Journal of Medical Devices-transactions of the Asme, 2013, 7, 030916, DOI: 10.1115/1.4024490.
  12. Kondor S.A., Grant C.G., Liacouras P.C., Schmid M.J., Parsons L.M., Macy B., Sabart B., Macedonia C.R., Personalized Surgical Instruments, Journal of Medical Devices-transactions of the Asme, 2013, 7, 030934, DOI: 10.1115/1.4024487.
  13. Landy M.S., A gloss on surface properties, Nature, 2007, 447, 158–159, https://doi.org/10.1038/nature05714
  14. Muro-Fraguas I., Sainz-García A., López M., Rojo-Bezares B., Múgica-Vidal R., Sainz-García E., Toledano P., Sáenz Y., González-Marcos A., Alba-Elías F., Antibiofilm coatings through atmospheric pressure plasma for 3D printed surgical instruments, Surface and Coatings Technology, 2020, 399, 126163, DOI: 10.1016/j.surfcoat.2020.126163.
  15. Okrasa S., Wilczopolska M., Strzelecki G., Nowakowska-Langier K., Chodun R., Minikayev R., Król K., Skowroński L., Namyślak K., Wicher B., Wiraszka A., Zdunek K., The influence of thermal stability on the properties of Cu3 N layers synthesized by pulsed magnetron sputtering method, Thin Solid Films, 2021, 735, DOI: 10.1016/j.tsf.2021.138889.
  16. PN-EN ISO 2813:2001.
  17. Posadowski W.M., Pulsed magnetron sputtering of reactive compounds, Thin Solid Films, 1999, 85–89, 343–344, DOI: 10.1016/S0040-6090(98)01580-6.
  18. Posadowski W.M., Pulsed magnetron sputtering of reactive compounds, Thin Solid Films, 1999, 85, 343–344, DOI: 10.1016/S0040-6090(98)01580-6.
  19. Posadowski W.M., Wiatrowski A., Dora J., Radzimski Z.J., Magnetron sputtering process control by medium-frequency power supply parameter, Thin Solid Films, 2008, 516 (14), 4478, DOI: 10.1016/j.tsf.2007.05.077.
  20. Redutko J., Kalwik A., Szarek A., Influence of Curing Time on Properties of Dental Photosensitive Resin Applied in DLP Technique of 3D Printing, Arch. Metall. Mater., 2021, 66 (2), 419–424, DOI: 10.24425/amm.2021.135873.
  21. Roy R. Mukhopadhyay A., Tribological studies of 3D printed ABS and PLA plastic parts, Materials Today: Proceedings, 2021, 41, 856–862, https://doi.org/10.1016/j.matpr.2020.09.235
  22. Shahrubudin N., Koshy P., Alipal J., Kadir M., Lee T., Heliyon, 2020, 6 (4), p.e 03734, DOI: 10.1016/j.heliyon.2020.e03734.
  23. Shilo D., Emodi O., Blanc O., Noy D., Rachmiel A., Printing the future – updates in 3D printing for surgical applications, Rambam Maimonides Med. J., 2018, 9 (3), DOI: 10.5041/RMMJ.10343.
  24. Singh R., Suri A., Three-Dimensional Printed Ergonomically Improved Microforceps for Microneurosurgery, World Neurosurgery, 2020, 141, 271–277, https://doi.org/10.1016/j.wneu.2020.05.105
  25. Strzelecki G.W., Nowakowska-Langier K., Chodun R., Okrasa S., Wicher B., Zdunek K., Influence of modulation frequency on the synthesis of thin films in pulsed magnetron sputtering processes, Materials Science-Poland, 2018, 36, 697–703, DOI: 10.2478/msp-2018-0078.
  26. Tino R., Moore R., Antoline S., Ravi P., Wake N., Ionita C., Morris J., Decker S., Sheikh A., Rybicki F., COVID-19 and the role of 3D printing in medicine, 3D Print Med., 2020, 6, 11, DOI: 10.1186/s41205-020-00064-7.
  27. Wong J.Y., Pfahnl A.C., 3D Printing of Surgical Instruments for Long-Duration Space Missions, Aviation, Space, and Environmental Medicine, Aerospace Medical Association, 2014, 85 (7), July, 758–763 (6), DOI: 10.3357/ASEM.3898.2014.
  28. Zdunek K., Nowakowska-Langier K., Chodun R., Dora J., Okrasa S., Talik E., Optimization of gas injection conditions during deposition of AlN layers by novel reactive GIMS method, Materials Science-Poland. 2014, 32 (2), 171–175, DOI: 10.2478/s13536-013-0169-6.
DOI: https://doi.org/10.37190/abb-02390-2024-02 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 37 - 46
Submitted on: Jan 31, 2024
Accepted on: Apr 16, 2024
Published on: Apr 16, 2024
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Arkadiusz Szarek, Justyna Łukomska-Szarek, Grzegorz Stradomski, Maciej Nadolski, Wojciech Wolański, Kamil Joszko, Katarzyna Nowakowska-Langier, Sebastian Okrasa, Dawid Larysz, Patrycja Larysz, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.