Have a personal or library account? Click to login
Effect of slope in an immersive virtual environment on segmental asymmetry in people with femoral amputation and a microprocessor knee Cover

Effect of slope in an immersive virtual environment on segmental asymmetry in people with femoral amputation and a microprocessor knee

Open Access
|May 2024

References

  1. Baker R., Esquenazi A., Benedetti M.G., Desloovere K., Gait Analysis: Clinical Facts, European Journal of Physical and Rehabilitation Medicine, 2016, 52, 4, 560–574.
  2. Bellmann M., Köhler T.M., Schmalz T., Comparative biomechanical evaluation of two technologically different microprocessor-controlled prosthetic knee joints in safety-relevant daily-life situations, Biomed. Tech., 2019, 64 (4), 407–420, DOI: 10.1515/bmt-2018-0026.
  3. Bussmann J.B., Grootscholten E.A., Stam H.J., Daily physical activity and heart rate response in people with a unilateral transtibial amputation for vascular disease, Arch. Phys. Med. Rehabil., 2004, 85 (2), 240–244, DOI: 10.1016/s0003-9993(03)00485-4.
  4. Bussmann J.B., Schrauwen H.J., Stam H.J., Daily physical activity and heart rate response in people with a unilateral traumatic transtibial amputation, Arch. Phys. Med. Rehabil., 2008, 89 (3), 430–434, DOI: 10.1016/j.apmr.2007.11.012.
  5. Cutti A.G., Verni G., Migliore G.L., Amoresano A., Raggi M., Reference values for gait temporal and loading symmetry of lower-limb amputees can help in refocusing rehabilitation targets, J. Neuroeng. Rehabil., 2018, 15 (Suppl. 1), 61, DOI: 10.1186/s12984-018-0403-x. PMID: 30255808; PMCID: PMC6157035.
  6. Darter B.J., Wilken J.M., Gait training with virtual reality-based real-time feedback: improving gait performance following transfemoral amputation, Phys. Ther., 2011, 91 (9), 1385–1394, DOI: 10.2522/ptj.20100360.
  7. Fuenzalida Squella S.A., Kannenberg A., Brandão Benetti Â., Enhancement of a prosthetic knee with a microprocessor-controlled gait phase switch reduces falls and improves balance confidence and gait speed in community ambulators with unilateral transfemoral amputation, Prosthet. Orthot. Int., 2018, 42 (2), 228–235, DOI: 10.1177/0309364617716207.
  8. Garnier Y.M., Paizis C., Martin A., Lepers R., Corticospinal excitability changes following downhill and uphill walking, Exp. Brain Res., 2019, 237 (8), 2023–2033.
  9. Gholizadeh H., Lemaire E.D., Sinitski E.H., Transtibial amputee gait during slope walking with the unity suspension system, Gait Posture, 2018, 65, 205–212, DOI: 10.1016/j.gaitpost.2018.07.059.
  10. Goujon-Pillet H., Sapin E., Fodé P., Lavaste F., Three-dimensional motions of trunk and pelvis during transfemoral amputee gait, Arch. Phys. Med. Rehabil., 2008, 89 (1), 87–94, DOI: 10.1016/j.apmr.2007.08.136.
  11. Griffiths B., Diment L., Granat M.H., A Machine Learning Classification Model for Monitoring the Daily Physical Behaviour of Lower-Limb Amputees, Sensors, 2021, 21 (22), 7458, DOI: 10.3390/s21227458.
  12. Hof A.L., Renske M. van Bockel, Schoppen T., Postema K., Control of Lateral Balance in Walking. Experimental Findings in Normal Subjects and above-Knee Amputees, Gait and Posture, 2007, 25, No. 2, 250–258, DOI: 10.1016/j.gaitpost.2006.04.013.
  13. Hutin E., Pradon D., Barbier F., Bussel B., Gracies J.M., Roche N., Walking velocity and lower limb coordination in hemiparesis, Gait Posture, 2012, 36 (2), 205–211, DOI: 10.1016/j.gaitpost.2012.02.016.
  14. Ichimura, Daisuke, Genki Hisano, Hiroto Murata, Toshiki Kobayashi, Hiroaki Hobara, Centre of Pressure during Walking after Unilateral Transfemoral Amputation, Scientific Reports, 2022, 12, No. 1, 17501.
  15. Jaegers S.M., Arendzen J.H., de Jongh H.J., Prosthetic gait of unilateral transfemoral amputees: a kinematic study, Arch. Phys. Med. Rehabil., 1995, 76 (8), 736–743, DOI: 10.1016/s0003-9993(95)80528-1.
  16. Kesar T.M., Binder-Macleod S.A., Hicks G.E., Reisman D.S., Minimal detectable change for gait variables collected during treadmill walking in individuals poststroke, Gait Posture, 2011, 33 (2), 314–317, DOI: 10.1016/j.gaitpost.2010.11.024.
  17. Lay A.N., Hass C.J., Gregor R.J., The effects of sloped surfaces on locomotion: a kinematic and kinetic analysis, J. Biomech., 2006, 39, 1621–1628.
  18. Lura D.J., Wernke M.M., Carey S.L., Kahle J.T., Miro R.M., Highsmith M.J., Differences in knee flexion between the Genium and C-Leg microprocessor knees while walking on level ground and ramps, Clin. Biomech., 2015, 30 (2), 175–181, DOI: 10.1016/j.clinbiomech.2014.12.003.
  19. Mellema M., Gjøvaag T., Reported Outcome Measures in Studies of Real-World Ambulation in People with a Lower Limb Amputation: A Scoping Review, Sensors, 2022, 22 (6), 2243, DOI: 10.3390/s22062243.
  20. Mengelkoch L.J., Kahle J.T., Highsmith M.J., Energy costs and performance of transtibial amputees and non-amputees during walking and running, Int. J. Sports Med., 2014, 35 (14), 1223–1228, DOI: 10.1055/s-0034-1382056. Epub. 2014, Aug. 21, PMID: 25144429.
  21. Miller W.C., Deathe A.B., Speechley M., Lower extremity prosthetic mobility: a comparison of 3 self-report scales, Arch. Phys. Med. Rehabil., 2001, 82 (10), 1432–1440, DOI: 10.1053/apmr.2001.25987.
  22. Möller S., Rusaw D., Hagberg K., Ramstrand N., Reduced cortical brain activity with the use of microprocessor-controlled prosthetic knees during walking, Prosthet. Orthot. Int., 2019, 43 (3), 257–265.
  23. Morgan S.J., Hafner B.J., Kartin D., Kelly V.E., Dual-task standing and walking in people with lower limb amputation: A structured review, Prosthet. Orthot. Int., 2018, 42 (6), 652–666.
  24. Müßig J., Brauner T., Kröger I., Varady P., Brand A., Klöpfer-Krämer I., Simmel S., Horstmann T., Auga P., Variability in trunk and pelvic movement of transfemoral amputees using a C-leg system compared to healthy controls, Hum. Mov. Sci., 2019, 68, 102539, DOI: 10.1016/j.humov.2019.102539,Epub. 2019, Nov. 1.
  25. Roerdink M., Cutti A.G., Summa A., Monari D., Veronesi D., van Ooijen M.W., Beek P.J., Gaitography Applied to Prosthetic Walking, Medical and Biological Engineering and Computing, 2014, 52, No. 11, 963–969, DOI: 10.1007/s11517-014-1195-1.
  26. Rusaw D., Ramstrand N., Motion-analysis studies of transtibial prosthesis users: a systematic review, Prosthet. Orthot. Int., 2011, 35 (1), 8–19, DOI: 10.1177/0309364610393060.
  27. Saunders J., Inman V., Eberhart H., The major determinants in normal and pathological gait, The Journal of Bone and Joint Surgery, American Volume, 1953, 543–558, 35-A(3).
  28. Schmid M., Beltrami G., Zambarbieri D., Verni G., Centre of Pressure Displacements in Trans-Femoral Amputees during Gait, Gait and Posture, 2005, 21, No. 3, 255–262, DOI: 10.1016/j.gaitpost.2004.01.016.
  29. Segal A.D., Orendurff M.S., Klute G.K., McDowell M.L., Pecoraro J.A., Shofer J., Czerniecki J.M., Kinematic and kinetic comparisons of transfemoral amputee gait using C-Leg and Mauch SNS prosthetic knees, J. Rehabil. Res. Dev., 2006, 43 (7), 857–870, DOI: 10.1682/jrrd.2005.09.0147.
  30. Sions J.M., Beisheim E.H., Manal T.J., Smith S.C., Horne J.R., Sarlo F.B., Differences in Physical Performance Measures Among Patients With Unilateral Lower-Limb Amputations Classified as Functional Level K3 Versus K4, Arch. Phys. Med. Rehabil., 2018, 99 (7), 1333–1341, DOI: 10.1016/j.apmr. 2017.12.033, Epub. 2018, Feb. 1, PMID: 29410114; PMCID: PMC6019138.
  31. Sparks R., Madabhushi A., Novel morphometric based classification via diffeomorphic based shape representation using manifold learning, Med. Image Comput. Comput. Assist. Interv., 2010, 13 (Pt 3), 658–665, DOI: 10.1007/978-3-642-15711-0_82.
  32. Sturk J.A., Lemaire E.D., Sinitski E.H., Dudek N.L., Besemann M., Hebert J.S., Baddour N., Maintaining stable transfemoral amputee gait on level, sloped and simulated uneven conditions in a virtual environment, Disabil. Rehabil. Assist. Technol., 2019, 14 (3), 226–235, DOI: 10.1080/17483107.2017.1420250.
  33. Thibault G., Gholizadeh H., Sinitski E., Baddour N., Lemaire E.D., Effects of the unity vacuum suspension system on transtibial gait for simulated non-level surfaces, PLoS One, 2018, 13 (6), e0199181, DOI: 10.1371/journal. pone.0199181.
  34. Turcot K., Aissaoui R., Boivin K., Hagemeister N., Pelletier M., de Guise J.A., Test-retest reliability and minimal clinical change determination for 3-dimensional tibial and femoral accelerations during treadmill walking in knee osteoarthritis patients, Arch. Phys. Med. Rehabil., 2008, 89 (4), 732–737, DOI: 10.1016/j.apmr.2007.09.033.
  35. van den Bogert A.J., Geijtenbeek T., Even-Zohar O., Steenbrink F., Hardin E.C., A real-time system for biomechanical analysis of human movement and muscle function, Med. Biol. Eng. Comput., 2013, 51 (10), 1069–1077, DOI: 10.1007/s11517-013-1076-z.
  36. Van Meter K.J., Basu N.B., Signatures of human impact: size distributions and spatial organization of wetlands in the Prairie Pothole landscape, Ecol. Appl., 2015, 25 (2), 451–465, DOI: 10.1890/14-0662.1.
  37. Vrieling A.H., Van Keeken H.G., Schoppen T., Otten E., Halbertsma J.P.K., Hof A.L., Postema K., Uphill and downhill walking in unilateral lower limb amputees, Gait Posture, 2008, 28, 235–242.
  38. Wolf E.J., Everding V.Q., Linberg A.L., Schnall B.L., Czerniecki J.M., Gambel J.M., Assessment of transfemoral amputees using C-Leg and Power Knee for ascending and descending inclines and steps, J. Rehabil. Res. Dev., 2012, 49 (6), 831–842, DOI: 10.1682/jrrd.2010.12.0234.
DOI: https://doi.org/10.37190/abb-02340-2023-02 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 147 - 157
Submitted on: Nov 6, 2023
Accepted on: Jan 22, 2024
Published on: May 18, 2024
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Eric Pantera, Victor Denys, Didier Pradon, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.