Have a personal or library account? Click to login
Effect of pulse laser treatment at different process variables on mechanical behavior of carbon nanotubes electrophoretically deposited on titanium alloy Cover

Effect of pulse laser treatment at different process variables on mechanical behavior of carbon nanotubes electrophoretically deposited on titanium alloy

Open Access
|May 2024

References

  1. Abdal-hay A., Staples R., Alhazaa A., Fournier B., Al-Gawati M., Lee R.S., Ivanovski S., Fabrication of micropores on titanium implants using femtosecond laser technology: Perpendicular attachment of connective tissues as a pilot study, Opt. Laser Technol., 2022, 148, 107624, https://doi.org/10.1016/j.optlastec.2021.107624
  2. Alkallas F.H., Ahmed H.A., Adel Pashameah R., Alrefaee S.H., Toghan A., Ben Gouider Trabelsi A., Mostafa A.M., Nonlinearity enhancement of Multi-walled carbon nanotube decorated with ZnO nanoparticles prepared by laser assisted method, Opt. Laser Technol., 2022, 155, 108444, https://doi.org/10.1016/j.optlastec.2022.108444
  3. Bahiraei M., Mazaheri Y., Sheikhi M., Heidarpour A., Mechanism of TiC formation in laser surface treatment of the commercial pure titanium pre-coated by carbon using PVD process, J. Alloys Compd., 2020, 834, 155080, https://doi.org/10.1016/j.jallcom.2020.155080
  4. Al Baroot A., Elsayed K.A., Haladu S.A., Magami S.M., Alheshibri M., Ercan F., Çevik E., Akhtar S., A.Manda A., Kayed T.S., Altamimi N.A., Alsanea A.A., Al-Otaibi A.L., One-pot synthesis of SnO2 nanoparticles decorated multi-walled carbon nanotubes using pulsed laser ablation for photocatalytic applications, Opt. Laser Technol., 2023, 157, 108734, https://doi.org/10.1016/j.optlastec.2022.108734
  5. Cai Q., Li G., Wu B., Xu S., Wang L., Guo Y., Effect of TiC content on microstructure and properties of TiC / Ni60 coatings on Ti6Al4V alloy deposited by laser cladding, Opt. Laser Technol., 2024, 168, 109854, https://doi.org/10.1016/j.optlastec.2023.109854.
  6. Chauhan A.S., Jha J.S., Telrandhe S., V S., Gokhale A.A., Mishra S.K., Laser surface treatment of α-β titanium alloy to develop a β -rich phase with very high hardness, J. Mater. Process. Technol., 2021, 288, 116873, https://doi.org/10.1016/j.jmatprotec.2020.116873
  7. Chen X., Du Y., Chung Y.-W., Commentary on using H/E and H3/E2 as proxies for fracture toughness of hard coatings, Thin Solid Films, 2019, 688, 137265, https://doi.org/doi.org/10.1016/j.tsf.2019.04.040
  8. Cheng J., Wang S., Tang S., Zhou J., Cao Z., Wu D., Liu C., Li Y., Controllable construction of laser-induced colorful patterns based on thermal energy transfer between carbon nanotubes substrate and polymer interface, Appl. Surf. Sci., 2023, 610, 155591, https://doi.org/10.1016/j.apsusc.2022.155591
  9. Dai F., Zhang Z., Ren X., Lu J., Huang S., Effects of laser shock peening with contacting foil on micro laser texturing surface of Ti6Al4V, Opt. Lasers Eng., 2018, 101, 99–105, https://doi.org/10.1016/j.optlaseng.2017.09.024
  10. Dou H. qiang, Liu H., Xu S., Chen Y., Miao X., Lü H., Jiang X., Influence of laser fluences and scan speeds on the morphologies and wetting properties of titanium alloy, Optik (Stuttg.), 2020, 224, 165443, https://doi.org/10.1016/j.ijleo.2020.165443
  11. Gerasimenko A.Y., Kurilova U.E., Savelyev M.S., Murashko D.T., Glukhova O.E., Laser fabrication of composite layers from biopolymers with branched 3D networks of single-walled carbon nanotubes for cardiovascular implants, Compos. Struct., 2021, 260, 113517, https://doi.org/10.1016/j.compstruct.2020.113517
  12. Gopi D., Shinyjoy E., Sekar M., Surendiran M., Kavitha L., Sampath Kumar T.S., Development of carbon nanotubes reinforced hydroxyapatite composite coatings on titanium by electrodeposition method, Corros. Sci., 2013, 73, 321–330, https://doi.org/10.1016/j.corsci.2013.04.021
  13. Gorodetskiy D.V., Kurenya A.G., Guselnikov A.V., Baskakova K.I., Smirnov D.A., Arkhipov V.E., Bulusheva L.G., Okotrub A.V., Laser beam patterning of carbon nanotube arrays for the work of electron field emitters in technical vacuum, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 2020, 262, 114691, https://doi.org/10.1016/j.mseb.2020.114691
  14. Guo C., Zhang M., Hu J., Fabrication of hierarchical structures on titanium alloy surfaces by nanosecond laser for wettability modification, Opt. Laser Technol., 2022, 148, 107728. https://doi.org/10.1016/j.optlastec.2021.107728
  15. Guo Y., Xu L., Luan J., Wan Y., Li R., Effect of carbon nanotubes additive on tribocorrosion performance of micro-arc oxidized coatings on Ti6Al4V alloy, Surfaces and Interfaces. 2022, 28, 101626, https://doi.org/10.1016/j.surfin.2021.101626
  16. Han X., Ma J., Tian A., Wang Y., Li Y., Dong B., Tong X., Ma X., Surface modification techniques of titanium and titanium alloys for biomedical orthopaedics applications: A review, Colloids Surfaces B Biointerfaces, 2023, 227, 113339, https://doi.org/10.1016/j.colsurfb.2023.113339
  17. Katahira K., Ezura A., Ohkawa K., Komotori J., Ohmori H., Generation of bio-compatible titanium alloy surfaces by laserinduced wet treatment, CIRP Ann. – Manuf. Technol., 2016, 65, 237–240, https://doi.org/10.1016/j.cirp.2016.04.053
  18. Kuczyńska-Zemła D., Pura J., Przybyszewski B., Pisarek M., Garbacz H., A comparative study of apatite growth and adhesion on a laser-functionalized titanium surface, Tribol. Int., 2023, 182, 108338, https://doi.org/10.1016/j.triboint.2023.108338
  19. Kümmel D., Linsler D., Schneider R., Schneider J., Surface engineering of a titanium alloy for tribological applications by nanosecond-pulsed laser, Tribol. Int., 2020, 150, 106376, https://doi.org/10.1016/j.triboint.2020.106376
  20. Majkowska-Marzec B., Rogala-Wielgus D., Bartmański M., Bartosewicz B., Zieliński A., Comparison of Properties of the Hybrid and Bilayer MWCNTs – Hydroxyapatite Coatings on Ti Alloy, Coatings, 2019, 9, 1–13.
  21. Majkowska-Marzec B., Sypniewska J., Microstructure and Mechanical Properties of Laser Surface-Treated Ti13Nb13Zr Alloy with MWCNTs Coatings, Adv. Mater. Sci., 2021, 21, 5–18, https://doi.org/10.2478/adms-2021-0021
  22. Majkowska-Marzec B., Teczar P., Bartmański M., Bartosewicz B., Jankiewicz B.J., Mechanical and corrosion properties of laser surface-treated Ti13Nb13Zr alloy with MWCNTs coatings, Materials (Basel), 2020, 13, https://doi.org/10.3390/ma13183991
  23. Makurat-Kasprolewicz B., Ossowska A., Recent advances in electrochemically surface treated titanium and its alloys for biomedical applications: A review of anodic and plasma electrolytic oxidation methods, Mater. Today Commun., 2023, 34, 105425, https://doi.org/10.1016/j.mtcomm.2023.105425
  24. Marchewka J., Jeleń P., Długoń E., Sitarz M., Błażewicz M., Spectroscopic investigation of the carbon nanotubes and polysiloxane coatings on titanium surface, J. Mol. Struct., 2020, 1212, https://doi.org/10.1016/j.molstruc.2020.128176
  25. Petronić S., Čolić K., Đorđević B., Milovanović D., Burzić M., Vučetić F., Effect of laser shock peening with and without protective coating on the microstructure and mechanical properties of Ti-alloy, Opt. Lasers Eng., 2020, 129, https://doi.org/10.1016/j.optlaseng.2020.106052
  26. Rogala-Wielgus D., Majkowska-Marzec B., Zieliński A., Bartmański M., Jankiewicz B.J., Mechanical behavior of bi-layer and dispersion coatings composed of several nanostructures on Ti13Nb13Zr alloy, Materials (Basel), 2021, 14, 2905, https://doi.org/doi.org/10.3390/ma14112905
  27. Ronoh K., Mwema F., Dabees S., Sobola D., Advances in sustainable grinding of different types of the titanium biomaterials for medical applications: A review, Biomed. Eng. Adv., 2022, 4, 100047, https://doi.org/10.1016/j.bea.2022.100047
  28. Shirazi H.A., Chan C.W., Lee S., Elastic-plastic properties of titanium and its alloys modified by fibre laser surface nitriding for orthopaedic implant applications, J. Mech. Behav. Biomed. Mater., 2021, 124, 104802, https://doi.org/10.1016/j.jmbbm.2021.104802
  29. Słoma M., Wierzbicki M., Skalski A., Composite powders with carbon nanotubes for laser printing of electronics, Microelectron. Reliab., 2022, 136, https://doi.org/10.1016/j.microrel.2022.114718.
  30. Sun P., Hu X., Wei G., Wang R., Wang Q., Wang H., Wang X., Ti3O5 nanofilm on carbon nanotubes by pulse laser deposition: Enhanced electrochemical performance, Appl. Surf. Sci., 2021, 548, https://doi.org/10.1016/j.apsusc.2021.149269
  31. Wang Q., Fang B., Liu C., Tu S.S., Cha L., Ramachandran C.S., Characterization of plasma electrolytic oxidation coatings containing carbon nanotubes formed on selective laser melted AlSi10Mg alloy, Surf. Coatings Technol., 2023, 454, 129145, https://doi.org/10.1016/j.surfcoat.2022.129145
  32. Weisheit A., Rittinghaus S.K., Dutta A., Majumdar J.D., Studies on the effect of composition and pre-heating on microstructure and mechanical properties of direct laser clad titanium aluminide, Opt. Lasers Eng., 2020, 131, 106041, https://doi.org/10.1016/j.optlaseng.2020.106041
  33. Xu B., Jiang P., Wang Y., Zhao J., Geng S., Formation mechanism of aluminum and its carbides under wobbling laser melting injection with carbon nanotubes-SiC hybrid particles, J. Mater. Process. Technol., 2023, 319, 118059, https://doi.org/10.1016/j.jmatprotec.2023.118059
  34. Yan C., Bor B., Plunkett A., Domènech B., Schneider G.A., Giuntini D., Nanoindentation of Supercrystalline Nanocomposites: Linear Relationship Between Elastic Modulus and Hardness, Jom., 2022, 74, 2261–2276, https://doi.org/10.1007/s11837-022-05283-3
  35. Yanan L., Ronglu S., Wei N., Tiangang Z., Yiwen L., Effects of CeO2 on microstructure and properties of TiC/Ti 2 Ni reinforced Ti-based laser cladding composite coatings, Opt. Lasers Eng., 2019, 120, 84–94, https://doi.org/10.1016/j.optlaseng.2019.03.001
  36. Yin H., Yang J., Zhang Y., Crilly L., Jackson R.L., Lou X., Carbon nanotube (CNT) reinforced 316L stainless steel composites made by laser powder bed fusion: Microstructure and wear response, Wear, 2022, 496–497, 204281, https://doi.org/10.1016/j.wear.2022.204281
  37. Yu A. hua, Xu W., Lu X., Tamaddon M., Liu B. wen, Tian S. wei, Zhang C., Mughal M.A., Zhang J. zhen, Liu C. zong, Development and characterizations of graded porous titanium scaffolds via selective laser melting for orthopedics applications, Trans. Nonferrous Met. Soc. China (English Ed.), 2023, 33, 1755–1767, https://doi.org/10.1016/S1003-6326(23)66219-3.
  38. Yu Z., Zhang J., Hu J., Study on surface properties of nanosecond laser textured plasma nitrided titanium alloy, Mater. Today Commun., 2022, 31, 103746, https://doi.org/10.1016/j.mtcomm.2022.103746.
  39. Zhou J.Z., Huang S., Zuo L.D., Meng X.K., Sheng J., Tian Q., Han Y.H., Zhu W.L., Effects of laser peening on residual stresses and fatigue crack growth properties of Ti-6Al-4V titanium alloy, Opt. Lasers Eng., 2014, 52, 189–194, https://doi.org/10.1016/j.optlaseng.2013.06.011.
DOI: https://doi.org/10.37190/abb-02324-2023-02 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 157 - 168
Submitted on: Aug 8, 2023
Accepted on: Oct 13, 2023
Published on: May 18, 2024
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Beata Majkowska-Marzec, Kacper Staszewski, Joanna Sypniewska, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.