Have a personal or library account? Click to login
Biomechanical characterization of bilateral pedicle screw internal fixation combinations on lumbar vertebrae Cover

Biomechanical characterization of bilateral pedicle screw internal fixation combinations on lumbar vertebrae

By: Weiqi Li,  Peiming Zhang and  Feihong Gan  
Open Access
|May 2024

References

  1. Ambati D.V., Wright E.K., Lehman R.A., Kang D.G., Wagner S.C., Dmitriev A.E., Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: a finite element study, The Spine Journal, 2015, 15, 1812–1822, DOI: 10.1016/j.spinee.2014.06.015.
  2. An H.S., Singh K., Vaccaro A.R., Wang G., Yoshida H., Eck J., McGrady L., Lim T.-H., Biomechanical evaluation of contemporary posterior spinal internal fixation configurations in an unstable burst-fracture calf spine model: special references of hook configurations and pedicle screws, Spine, 2004, 29, 257–262.
  3. Burton D., McIff T., Fox T., Lark R., Asher M.A., Glattes R.C., Biomechanical analysis of posterior fixation techniques in a 360 arthrodesis model, Spine, 2005, 30, 2765–2771.
  4. Cai X.-Y., YuChi C.-X., Du C.-F., Mo Z.-J., The effect of follower load on the range of motion, facet joint force, and intradiscal pressure of the cervical spine: a finite element study, Med. Biol. Eng. Comput., 2020, 58, 1695–1705, DOI: 10.1007/s11517-020-02189-7.
  5. Chan R.W., Titze I.R., Effect of postmortem changes and freezing on the viscoelastic properties of vocal fold tissues, Annals of Biomedical Engineering, 2003, 31, 482–491, DOI: 10.1114/1.1561287.
  6. Chen S.-H., Lin S.-C., Tsai W.-C., Wang C.-W., Chao S.-H., Biomechanical comparison of unilateral and bilateral pedicle screws fixation for transforaminal lumbar interbody fusion after decompressive surgery – a finite element analysis, BMC Musculoskeletal Disorders, 2012, 13, 72, DOI: 10.1186/1471-2474-13-72.
  7. Crolla J.P., Lawless B.M., Cederlund A.A., Aspden R.M., Espino D.M., Analysis of hydration and subchondral bone density on the viscoelastic properties of bovine articular cartilage, BMC Musculoskeletal Disorders, 2022, 23, 228, DOI: 10.1186/s12891-022-05169-0.
  8. Gautschi O.P., Schatlo B., Schaller K., Tessitore E., Clinically relevant complications related to pedicle screw placement in thoracolumbar surgery and their management: a literature review of 35,630 pedicle screws, Neurosurgical Focus, 2011, 31, E8, DOI: 10.3171/2011.7.FOCUS11168.
  9. Goto K., Tajima N., Chosa E., Totoribe K., Kuroki H., Arizumi Y., Arai T., Mechanical analysis of the lumbar vertebrae in a three-dimensional finite element method model in which intradiscal pressure in the nucleus pulposus was used to establish the model, Journal of Orthopaedic Science, 2002, 7, 243–246.
  10. Griza S., de Andrade C.E.C., Batista W.W., Tentardini E.K., Strohaecker T.R., Case study of Ti6Al4V pedicle screw failures due to geometric and microstructural aspects, Engineering Failure Analysis, 2012, 25, 133–143.
  11. Harper R.A., Pfeiffer F.M., Choma T.J., The minipig as a potential model for pedicle screw fixation: morphometry and mechanics, Journal of Orthopaedic Surgery and Research, 2019, 14, 246, DOI: 10.1186/s13018-019-1292-9.
  12. Heary R.F., Kumar S., Decision-making in burst fractures of the thoracolumbar and lumbar spine, Indian Journal of Orthopaedics, 2007, 41, 268.
  13. Heliövaara M., Mäkelä M., Knekt P., Impivaara O., Aromaa A., Determinants of sciatica and low-back pain, Spine, 1991, 16, 608–614.
  14. Hohmann E., Keough N., Glatt V., Tetsworth K., Putz R., Imhoff A., The mechanical properties of fresh versus fresh/frozen and preserved (Thiel and Formalin) long head of biceps tendons: A cadaveric investigation, Annals of Anatomy, 2019, 221, 186–191, DOI: 10.1016/j.aanat.2018.05.002.
  15. Huang W., Luo T., Efficacy analysis of pedicle screw internal fixation of fractured vertebrae in the treatment of thoracolumbar fractures, Experimental and Therapeutic Medicine, 2013, 5, 678–682.
  16. Ito M., Fay L.A., Ito Y., Yuan M.R., Edwards T.W., Yuan H.A., The Effect of Pulsed Electromagnetic Fields on Instrumented Posterolateral Spinal Fusion and Device-Related Stress Shielding1996 Program Committee, Spine, 1997, 22, 382–388.
  17. Li W., Shepherd D.E.T., Espino D.M., Frequency dependent viscoelastic properties of porcine brain tissue, Journal of the Mechanical Behavior of Biomedical Materials, 2020, 102, 103460, DOI: 10.1016/j.jmbbm.2019.103460.
  18. Li W., Shepherd D.E.T., Espino D.M., Dynamic mechanical characterization and viscoelastic modeling of bovine brain tissue, Journal of the Mechanical Behavior of Biomedical Materials, 2021, 114, 104204, DOI: 10.1016/j.jmbbm.2020.104204.
  19. Li W., Shepherd D.E.T., Espino D.M., Investigation of the Compressive Viscoelastic Properties of Brain Tissue Under Time and Frequency Dependent Loading Conditions, Annals of Biomedical Engineering, 2021, DOI: 10.1007/s10439-021-02866-0.
  20. Liu C., Kamara A., Yan Y., Investigation into the biomechanics of lumbar spine micro-dynamic pedicle screw, BMC Musculoskeletal Disorders, 2018, 19, 231, DOI: 10.1186/s12891-018-2132-5.
  21. Mahmood H., Shepherd D.E.T., Espino D.M., Surface damage of bovine articular cartilage-off-bone: the effect of variations in underlying substrate and frequency, BMC Musculoskelet Disord, 2018, 19, 384, DOI: 10.1186/s12891-018-2305-2.
  22. McKinley T.O., McLain R.F., Yerby S.A., Sharkey N.A., Sarigul-Klijin N., Smith T.S., Characteristics of pedicle screw loading: effect of surgical technique on intravertebral and intrapedicular bending moments, Spine, 1999, 24, 18–24.
  23. Mu S., Wang J., Gong S., Mechanical Analysis of Posterior Pedicle Screw System Placement and Internal Fixation in the Treatment of Lumbar Fractures, Computational and Mathematical Methods in Medicine, 2022, e6497754, DOI: 10.1155/2022/6497754.
  24. Nayak A.N., Gutierrez S., Billys J.B., Santoni B.G., Castellvi A.E., Biomechanics of lateral plate and pedicle screw constructs in lumbar spines instrumented at two levels with laterally placed interbody cages, The Spine Journal, 2013, 13, 1331–1338.
  25. Ozer A.F., Oktenoglu T., Egemen E., Sasani M., Yilmaz A., Erbulut D.U., Yaman O., Suzer T., Lumbar single-level dynamic stabilization with semi-rigid and full dynamic systems: a retrospective clinical and radiological analysis of 71 patients, Clinics in Orthopedic Surgery, 2017, 9, 310.
  26. Park P., Garton H.J., Gala V.C., Hoff J.T., McGillicuddy J.E., Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature, Spine, 2004, 29, 1938–1944.
  27. Perna A., Smakaj A., Vitiello R., Velluto C., Proietti L., Tamburrelli F.C., Maccauro G., Posterior percutaneous pedicle screws fixation versus open surgical instrumented fusion for thoraco-lumbar spinal metastases palliative management: a systematic review and meta-analysis, Frontiers in Oncology, 2022, 12, 884928.
  28. Roy-Camille R., Saillant G., Mazel C., Internal fixation of the lumbar spine with pedicle screw plating, Clinical Orthopaedics and Related Research®, 1986, 203, 7–17.
  29. Samini F., Gharedaghi M., Khajavi M., Samini M., The etiologies of low back pain in patients with lumbar disk herniation, Iranian Red Crescent Medical Journal, 2014, 16.
  30. Sanpera Jr I., Piza-Vallespir G., Burgos-Flores J., Upper thoracic pedicle screws loss of fixation causing spinal cord injury, Journal of Pediatric Orthopaedics, 2914, 34, e39.
  31. Scifert J.L., Sairyo K., Goel V.K., Grobler L.J., Grosland N.M., Spratt K.F., Chesmel K.D., Stability Analysis of an Enhanced Load Sharing Posterior Fixation Device and Its Equivalent Conventional Device in a Calf Spine Model, Spine, 1999, 24, 2206.
  32. Smedley J., Inskip H., Cooper C., Coggon D., Natural history of low back pain: a longitudinal study in nurses, Spine, 1998, 23, 2422–2426.
  33. Song M., Sun K., Li Z., Zong J., Tian X., Ma K., Wang S., Stress distribution of different lumbar posterior pedicle screw insertion techniques: a combination study of finite element analysis and biomechanical test, Sci Rep., 2021, 11, 12968, DOI: 10.1038/s41598-021-90686-6.
  34. Szarko M., Muldrew K., Bertram J.E.A., Freeze-thaw treatment effects on the dynamic mechanical properties of articular cartilage, BMC Musculoskeletal Disorders, 2010, 11, DOI: Artn 231 10.1186/1471-2474-11-231.
  35. Tai C.-L., Chen W.-P., Liu M.-Y., Li Y.-D., Tsai T.-T., Lai P.-L., Hsieh M.-K., Biomechanical comparison of pedicle screw fixation strength among three different screw trajectories using single vertebrae and one-level functional spinal unit, Frontiers in Bioengineering and Biotechnology, 2022, 10.
  36. Tschugg A., Hartmann S., Lener S., Rietzler A., Sabrina N., Thomé C., Minimally invasive spine surgery in lumbar spondylodiscitis: a retrospective single-center analysis of 67 cases, European Spine Journal, 2017, 26, 3141–3146.
  37. Wang H., Peng J., Zeng Q., Zhong Y., Xiao C., Ye Y., Huang W., Liu W., Luo J., Dynesys system vs posterior decompression and fusion for the treatment of lumbar degenerative diseases, Medicine, 2020, 99.
  38. Wilke H.-J., Geppert J., Kienle A., Biomechanical in vitro evaluation of the complete porcine spine in comparison with data of the human spine, Eur. Spine J., 2011, 20, 1859–1868, DOI: 10.1007/s00586-011-1822-6.
  39. Willett K., Hearn T., Cuncins A., Biomechanical testing of a new design for Schanz pedicle screws, Journal of Orthopaedic Trauma, 1993, 7, 375–380.
  40. Yaman O., Demir T., Arslan A.K., Iyidiker M.A., Tolunay T., Camuscu N., Ulutas M., The comparison of pullout strengths of various pedicle screw designs on synthetic foams and ovine vertebrae, Turkish Neurosurgery, 2015, 25.
  41. Yildirim O.S., Aksakal B., Hanyaloglu S.C., Erdogan F., Okur A., Hydroxyapatite dip coated and uncoated titanium poly-axial pedicle screws: an in vivo bovine model, Spine, 2006, 31, E215–E220.
  42. Zou X., Li H., Teng X., Xue Q., Egund N., Lind M., Bünger C., Pedicle screw fixation enhances anterior lumbar interbody fusion with porous tantalum cages: an experimental study in pigs, Spine, 2005, 30, E392–E399.
DOI: https://doi.org/10.37190/abb-02315-2023-03 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 43 - 51
Submitted on: Sep 25, 2023
Accepted on: Oct 27, 2023
Published on: May 18, 2024
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Weiqi Li, Peiming Zhang, Feihong Gan, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.