References
- A
del I.M., Elmeligy M.F., Elkasabgy N.A., Conventional and recent trends of scaffolds fabrication: A superior mode for tissue engineering, Pharmaceutics, 2022, 14, 306. - B
aran E.H., Yildirim Erbil H., Surface modification of 3d printed pla objects by fused deposition modeling: A review, Colloids and Interfaces, 2019, 3, 43. - B
ayart M., Dubus M., Charlon S., Kerdjoudj H., Baleine N., Benali S., Raquez J.M., Soulestin J., Pellet-based fused filament fabrication (FFF)-derived process for the development of polylactic acid/hydroxyapatite scaffolds dedicated to bone regeneration, Materials (Basel), 2022, 15, 5615. - B
odnárová S., Gromošová S., Hudák R., Rosocha J., Živčák J., Plšíková J., Vojtko M., Tóth T., Harvanová D., Ižariková G., Danišovič Ľ., 3D printed Polylactid Acid based porous scaffold for bone tissue engineering: an in vitro study, Acta Bioeng. Biomech., Orig. Pap., 2019, 21. - B
oschetto A., Bottini L., Veniali F., Integration of FDM surface quality modeling with process design, Addit. Manuf., 2016, 12, Part B, 334–344. - B
rackett J., Cauthen D., Condon J., Smith T., Gallego N., Kunc V., Duty C., Characterizing the influence of print parameters on porosity and resulting density, Solid Freeform Fabrication Symposium 2019. - C
hacón J.M., Caminero M.A., García -Plaza E., Núñez P.J., Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection, Mater. Des., 2017, 124, 143–157. - D
ey A., Eagle I.N.R., Yodo N., A review on filament materials for fused filament fabrication, J. Manuf. Mater. Process, 2021, Vol. 5, Page 69, 2021, 5, 69. - D
onate R., Monzón M., Alemán -Domínguez M.E., Additive manufacturing of PLA-based scaffolds intended for bone regeneration and strategies to improve their biological properties, E-Polymers, 2020, 20, 571–599. - D
rummer D., Cifuentes -Cuéllar S., Rietzel D., Suitability of PLA/TCP for fused deposition modeling, Rapid Prototyp. J., 2012, 18, 500–507. - D
upuy P.M., Austin P., Delaney G.W., Schwarz M.P., Pore scale definition and computation from tomography data, Comput. Phys. Commun., 2011, 182, 2249–2258. - F
ico D., Rizzo D., Casciaro R., Corcione C.E., A review of polymer-based materials for fused filament fabrication (FFF): Focus on sustainability and recycled materials, Polymers (Basel), 2022, 14, 465. - G
ajdos I., Slota J., Influence of printing conditions on structure in FDM prototypes, Tech. Vjesn., 2013, 20, 231–236. - G
onabadi H., Yadav A., Bull S.J., The effect of processing parameters on the mechanical characteristics of PLA produced by a 3D FFF printer, Int. J. Adv. Manuf. Technol., 2020, 111, 695–709. - G
rémare A., Guduric V., Bareille R., Heroguez V., Latour S., L’Heureux N., Fricain J.C., Catros S., Le Nihouannen D., Characterization of printed PLA scaffolds for bone tissue engineering, J. Biomed. Mater. Res. A, 2018, 106, 887–894. - I
brahim M., Hafsa M.N., Studies on rapid prototyping pattern using PLA material and FDM technique, Appl. Mech. Mater., 2014, 465–466, 1070–1074. - K
hosravani M.R., Reinicke T., On the use of X-ray computed tomography in assessment of 3D-printed components, J. Nondestruct. Eval., 2020, 39. - K
rishani M., Shin W.Y., Suhaimi H., Sambudi N.S., Development of scaffolds from bio-based natural materials for tissue regeneration applications: A review, Gels, 2023, 9, 100. - L
iao B., Xu C., Li W., Lu D., Jin Z.M., Bionic mechanical design and SLM manufacture of porous Ti6Al4V scaffolds for load-bearing cancellous bone implants, Acta Bioeng. Biomech., 2021, 23, 97–107. - M
ajid S.N.A., Alkahari M.R., Ramli F.R., Maidin S., Fai T.C., Sudin M.N., Influence of integrated pressing during Fused Filament Fabrication on tensile strength and porosity, J. Mech. Eng., 2017, SI 3, 185–197. - M
assart D.L., Vandeginste B.G.M., Buydens L.M.C., Jong S. De , Lewi P.J., Smeyers -Verbeke J., Two-level factorial designs, Data Handling in Science and Technology, 1998, 659–682. - M
ohamed O.A., Masood S.H., Bhowmik J.L., Optimization of fused deposition modeling process parameters for dimensional accuracy using I-optimality criterion, Measurement, 2016, 81, 174–196. - M
ohamed O.A., Masood S.H., Bhowmik J.L., Mathematical modeling and FDM process parameters optimization using response surface methodology based on Q-optimal design, Appl. Math. Model., 2016, 40, 10052–10073. - M
ohammed A., Elshaer A., Sareh P., Elsayed M., Hassanin H., Additive manufacturing technologies for drug delivery applications, Int. J. Pharm., 2020, 580, 119245. - N
iemczyk -Soczynska B., Zaszczyńska A., Zabielski K., Sajkiewicz P., Hydrogel, electrospun and composite materials for bone/cartilage and neural tissue engineering, Materials (Basel), 2021, 14, 6899. - O
lejarczyk M., Gruber K., Ziółkowski G., Review of Available Software for Path Control of Personal 3D Printers Toolheads, Tech. Issues, 2015, 3, 48–55. - R
ana D., Arulkumar S., Vishwakarma A., Ramalingam M., Considerations on designing scaffold for tissue engineering, [in:] A. Vishwakarma, P. Sharpe, S. Shi, M. Ramalingam (Eds.), Stem Cell Biology and Tissue Engineering in Dental Sciences, Elsevier Inc., 2015, 133–148. - R
eddy R.D.P., Sharma V., Additive manufacturing in drug delivery applications: A review, Int. J. Pharm., 2020, 589, 119820. - R
einoso M.R., Civera M., Burgio V., Bergamin F., Ruiz O.G., Pugno N.M., Surace C., 3D printing and testing of rose thorns or limpet teeth inspired anchor device for tendon tissue repair, Acta Bioeng. Biomech., 2021, 23, 63–74. - S
ears F., 3D print quality in the context of PLA color, Massachusetts Inst. Technol, 2016, 1–172. - S
ingh S., Singh G., Prakash C., Ramakrishna S., Current status and future directions of fused filament fabrication, J. Manuf. Process., 2020, 55, 288–306. - S
uamte L., Tirkey A., Barman J., Jayasekhar Babu P., Various manufacturing methods and ideal properties of scaffolds for tissue engineering applications, Smart Mater. Manuf., 2023, 1, 100011. - S
zymczyk -Ziółkowska P., Łabowska M.B., Detyna J., Michalak I., Gruber P., A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques, Biocybern. Biomed. Eng., 2020, 40, 624–638. - T
anikella N.G., Wittbrodt B., Pearce J.M., Tensile strength of commercial polymer materials for fused filament fabrication 3D printing, Addit. Manuf., 2017, 15, 40–47. - T
havornyutikarn B., Chantarapanich N., Sitthiseripratip K., Thouas G.A., Chen Q., Bone tissue engineering scaffolding: computer-aided scaffolding techniques, Prog. Biomater., 2014, 3, 1–42. - W
oźna A.E., Junka A.F., Szymczyk P.E., The influence of different composite mixtures (PLA/HA) manufactured with additive laser technology on the ability of S. aureus and P. aeruginosa to form biofilms, Acta Bioeng. Biomech. Orig. Pap., 2018, 20, 101–106. - Y
adav A., Rohru P., Babbar A., Kumar R., Ranjan N., Chohan J.S., Kumar R., Gupta M., Fused filament fabrication: A state-of-the-art review of the technology, materials, properties and defects, Int. J. Interact. Des. Manuf., 2022,