Have a personal or library account? Click to login
Influence of bioactive metal fillers on antimicrobial properties of PA12 composites produced by laser-based powder bed fusion of polymers Cover

Influence of bioactive metal fillers on antimicrobial properties of PA12 composites produced by laser-based powder bed fusion of polymers

Open Access
|Dec 2023

References

  1. Alshrefy A.J., Alwohaibi R.N., Alhazzaa S.A., Almaimoni R.A., AlMusailet L.I., AlQahtani S.Y., Alshahrani M.S., Incidence of Bacterial and Fungal Secondary Infections in COVID-19 Patients Admitted to the ICU, Int. J. Gen. Med., 2022, 15, 7475–7485, https://doi.org/10.2147/IJGM.S382687, PMID: 36187162, PMCID: PMC9518678.
  2. Arnal N., Tacconi de Alaniz M.J., Marra C.A., Cytotoxic effects of copper overload on human-derived lung and liver cells in culture, Biochimica et Biophysica Acta, 2012, 1820, 931–939, https://doi.org/10.1016/j.bbagen.2012.03.007
  3. Balzereit S., Proes S., Altstädt S., Emmelmann C., Properties of copper modified polyamide 12-powders and their potential for the use as laser direct structurable electronic circuit carriers, Addit. Manuf., 2018, 23, 347–354, https://doi.org/10.1016/j.addma.2018.08.016
  4. Castaño N., Cordts S.C., Kurosu Jalil M., Zhang K.S., Koppaka S., Bick A.D., Paul R., Tang Sky., Fomite Transmission, Physicochemical Origin of Virus-Surface Interactions, and Disinfection Strategies for Enveloped Viruses with Applications to SARS-CoV-2, ACS Omega, 2021, 6 (10), 6509–6527, DOI: 10.1021/acsomega.0c06335, PMID: 33748563, PMCID: PMC7944398.
  5. Coffey B.M., Anderson G.G., Biofilm Formation in the 96-Well Microtiter Plate, Methods in Molecular Biology, 2014, 1149, 631–641, https://doi.org/10.1007/978-1-4939-0473-0_48
  6. Equbal A., Akhter S., Sood A.K., Equbal I., The usefulness of additive manufacturing (AM) in COVID-19, Annals of 3D Printed Medicine, 2021, 2, https://doi.org/10.1016/j.stlm.2021.100013
  7. Falces-Romero I., Bloise I., García-Rodríguez J., Cendejas-Bueno E., SARS-CoV-2 Working Group. Staphylococcus aureus bacteremia in patients with SARS-CoV-2 infection, Med. Clin. (Engl Ed), 2023, 160 (11), 495–498, DOI: 10.1016/j.medcle.2023.05.007. PMID: 37311167; PMCID: PMC10250598.
  8. Frei A., Verderosa A.D., Elliott A.G. et al., Metals to combat antimicrobial resistance, Nat. Rev. Chem., 2023, 7, 202–224, https://doi.org/10.1038/s41570-023-00463-4
  9. Grela E., KozŁowska J., Grabowiecka A., Current methodology of MTT assay in bacteria – A review, Acta Histochem., 2018, 120, 303–311, https://doi.org/10.1016/J.ACTHIS.2018.03.007
  10. Gruber P., Hoppe V., Grochowska E., Paleczny J., Junka A., Smolina I. et al., Material extrusion-based additive manufacturing of poly(Lactic acid) antibacterial filaments – a case study of antimicrobial properties, Polymers (Basel), 2021, 13, https://doi.org/10.3390/polym13244337
  11. Gruber P., ZŁkowski G., Olejarczyk M., Grochowska E., Hoppe V., Szymczyk-ZŁkowska P. et al., Influence of bioactive metal fillers on microstructural homogeneity of PA12 composites produced by polymer Laser Sintering, Archives of Civil and Mechanical Engineering, 2022, 22, 117, https://doi.org/10.1007/s43452-022-00442-4
  12. Karoluk M., Koenig G., Kurzynowski T., Method of medical equipment evaluation and preparation for on-demand additive manufacturing with the conventional supply chain being broken: A case study of mask filter adapter production during COVID-19, Applied Sciences (Switzerland), 2021, 11, https://doi.org/10.3390/app112412016
  13. Kim I.Y., Seo S.J., Moon H.S., Yoo M.K., Park I.Y., Kim B.C. et al., Chitosan and its derivatives for tissue engineering applications, Biotechnol. Adv., 2008, 26, 1–21, https://doi.org/10.1016/j.biotechadv.2007.07.009
  14. Kramer A., Dissemond J., Kim S., Willy C., Mayer D., Papke R., Tuchmann F., Assadian O., Consensus on Wound Antisepsis: Update 2018, Skin Pharmacol. Physiol., 2018, 31 (1), 28–58, DOI: 10.1159/000481545. Epub. 2017, Dec. 21.
  15. Kubin C.J., McConville T.H., Dietz D., Zucker J., May M., Nelson B. et al., Characterization of Bacterial and Fungal Infections in Hospitalized Patients with Coronavirus Disease 2019 and Factors Associated with Health Care-Associated Infections, Open Forum Infect. Dis., 2021, 8, https://doi.org/10.1093/ofid/ofab201
  16. Lanzl L., Wudy K., Greiner S., Drummer D., Selective laser sintering of copper filled polyamide 12: Characterization of powder properties and process behavior, Polym. Compos., 2019, 40, 1801–1809, https://doi.org/10.1002/pc.24940
  17. Lee W.H., Kim D.S., Ahn Y.J., Choi B.O., Choi K.H., Development of Industrial SFF System Using a New Selective Dual-Laser Sintering Process, Key Eng. Mater., 2006, 326–328, 123–126, https://doi.org/10.4028/www.scientific.net/kem.326-328.123
  18. Liao C., Li Y., Tjong S.C., Bactericidal and Cytotoxic Properties of Silver Nanoparticles, Int. J. Mol. Sci., 2019, 21, https://doi.org/10.3390/ijms20020449
  19. Logithkumar R., Keshavnarayan A., Dhivya S., Chawla A., Saravanan S., Selvamurugan N., A review of chitosan and its derivatives in bone tissue engineering, Carbohydr. Polym., 2016, 151, 172–188, https://doi.org/10.1016/j.carbpol.2016.05.049
  20. Lu D.E., Hung S.H., Su Y.S., Lee W. Sen., Analysis of Fungal and Bacterial Co-Infections in Mortality Cases among Hospitalized Patients with COVID-19 in Taipei, Taiwan. Journal of Fungi, 2022, 8, https://doi.org/10.3390/jof8010091
  21. Mouriño V., Boccaccini A.R., Bone tissue engineering therapeutics: Controlled drug delivery in three-dimensional scaffolds, J. R. Soc. Interface, 2010, 7, 209–227, https://doi.org/10.1098/rsif.2009.0379
  22. Muñoz-Bonilla A., Fernández-García M., Polymeric materials with antimicrobial activity, Progress in Polymer Science (Oxford), 2012, 37, 281–339, https://doi.org/10.1016/j.progpolymsci.2011.08.005
  23. Na I., Kennedy D.C., Size-Specific Copper Nanoparticle Cytotoxicity Varies between Human Cell Lines, Int. J. Mol. Sci., 2021, 22, https://doi.org/10.3390/ijms22041548
  24. Olmos D., González_Benito J., Polymeric materials with antibacterial activity: A review, Polymers (Basel), 2021, 13, 1–30, https://doi.org/10.3390/polym13040613
  25. Özbay B., Bekem A., Serhatli I.E., Öztürk S., Bulduk M.E., Effects of copper fillers on mechanical and electrical properties of selective laser sintered PA 12-Cu composites, Materials Technology, 2021, 37, 10, 1541–1553, DOI: 10.1080/10667857.2021.1964203.
  26. Özbay B., K E., Kisasöz A., Karabeyoğlu S., Dry sliding wear behavior of energy density dependent PA 12/Cu composites produced by selective laser sintering, Materials Testing, 2023, 65 (2), 303–312, https://doi.org/10.1515/mt-2022-0260
  27. Psochia E., Papadopoulos L., Gkiliopoulos D.J., Francone A., Grigora M.-E., Tzetzis D. et al., Bottom-Up Development of Nanoimprinted PLLA Composite Films with Enhanced Antibacterial Properties for Smart Packaging Applications, Macromol. 2021, 1, 49–63, https://doi.org/10.3390/macromol1010005
  28. Repetto G., del Peso A., Zurita J., Neutral red uptake assay for the estimation of cell viability/cytotoxicity, Nat. Protoc., 2008, 3, 1125–1131, https://doi.org/10.1038/nprot.2008.75
  29. Rzeszuto J., Kaczor P., Kosztulska B., Handzlik I., SuwaŁa S., Junik R., Is additive manufacturing a magic bullet to resupply lacking PPE? Producing respirators and face shields during COVID-19 pandemic: A systematic review [published online as ahead of print on December 15, 2021]. Polim. Med., 2021, DOI: 10.17219/pim/144329.
  30. Qiu H., Si Z., Luo Y., Feng P., Wu X., Hou W. et al., The Mechanisms and the Applications of Antibacterial Polymers in Surface Modification on Medical Devices, Front. Bioeng. Biotechnol., 2020, 8, https://doi.org/10.3389/fbioe.2020.00910
  31. Salah I., Parkin I.P., Allan E., Copper as an antimicrobial agent: recent advances, RSC Advances, 2021, 11, 18179–18186, http://dx.doi.org/10.1039/D1RA02149D
  32. Segrelles-Calvo G., de S Araújo G.R., Llopis-Pastor E., Carrillo J., Hernández-Hernández M., Rey L. et al., Candida spp. co-infection in COVID-19 patients with severe pneumonia: Prevalence study and associated risk factors, Respir. Med., 2021, 188, https://doi.org/10.1016/j.rmed.2021.106619
  33. Shafiekhani M., Shekari Z., Boorboor A., Zare Z., Arabsheybani S., Azadeh N., Bacterial and fungal coinfections with SARS-CoV-2 in solid organ recipients: a retrospective study, Virol J., 2022, 19, https://doi.org/10.1186/s12985-022-01763-9
  34. Shumbula N.P., Ndala Z.B., Nkabinde S.S., Nchoe O., Macumele K., Mpelane S., Shumbula M.P., Mdluli P.S., Sibuyi N.R.S., Njengele-Tetyana Z., Tetyana P., Mlambo M., Moloto N., Antimicrobial activity and cytotoxicity of copper/polydopamine nanocomposites, Results in Chemistry, 2022, 4, 100635, https://doi.org/10.1016/j.rechem.2022.100635
  35. Turner R.D., Wingham J.R., Paterson T.E., Shepherd J., Majewski C., Use of silver-based additives for the development of antibacterial functionality in Laser Sintered polyamide 12 parts, Sci. Rep., 2020, 10, 1–11, https://doi.org/10.1038/s41598-020-57686-4
  36. Venkatesan J., Kim S.K., Chitosan composites for bone tissue engineering – An overview, Mar. Drugs, 2010, 8, 2252–2266, https://doi.org/10.3390/md8082252
  37. Vilardell A.M., Yadroitsava I., Wolf W.K.C., Du Plessis A., Tshibalanganda M., Kouprianoff D.P. et al., Laser powder bed fusion of polyamide-composite for antibacterial applications: Characterization and properties, Mater. Today Commun., 2022, 31, https://doi.org/10.1016/j.mtcomm.2022.103727
  38. Wohlers T., Wohlers Report 2021, 3D Printing and Additive Manufacturing Global State of the Industry, 2021.
  39. Xiu Z.M., Ma J., Alvarez P.J.J., Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions, Environ. Sci. Technol., 2011, 45, 9003–9008, https://doi.org/10.1021/es201918f
  40. Xiu Z.M., Zhang Q.B., Puppala H.L., Colvin V.L., Alvarez P.J.J., Negligible particle-specific antibacterial activity of silver nanoparticles, Nano Lett., 2012, 12, 4271–4275, https://doi.org/10.1021/nl301934w
  41. Zhou P., Liu Z., Chen Y., Xiao Y., Huang X., Fan X.G., Bacterial and fungal infections in COVID-19 patients: A matter of concern, Infect. Control Hosp. Epidemiol., 2020, 41, 1124–1125, https://doi.org/10.1017/ice.2020.156
  42. Zuniga J.M., Cortes A., The role of additive manufacturing and antimicrobial polymers in the COVID-19 pandemic, Expert Rev. Med. Devices, 2020, 17, 477–481, https://doi.org/10.1080/17434440.2020.1756771
DOI: https://doi.org/10.37190/abb-02303-2023-04 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 11 - 21
Submitted on: Aug 29, 2023
Accepted on: Dec 31, 2023
Published on: Dec 31, 2023
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Piotr Gruber, Patrycja Szymczyk-Ziółkowska, Michał Olejarczyk, Adam Junka, Krystyna Fabianowska-Majewska, Malwina Brożyna, Tomasz Kurzynowski, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.