Have a personal or library account? Click to login
Are the mechanical properties of Achilles tendon altered in CrossFit athletes? Reliability and accuracy of myotonometry Cover

Are the mechanical properties of Achilles tendon altered in CrossFit athletes? Reliability and accuracy of myotonometry

Open Access
|May 2024

References

  1. Alawna M.A., Unver B.H., Yuksel E.O., The Reliability of a Smartphone Goniometer Application Compared With a Traditional Goniometer for Measuring Ankle Joint Range of Motion, J. Am. Podiatr. Med. Assoc., 2019, 109 (1), 22–29, DOI: 10.7547/16-128.
  2. Barreto S., Pierantoni M., Hammerman M., Törnquist E., Le Cann S., Diaz A., Engqvist J. et al., Nanoscale characterization of collagen structural responses to in situ loading in rat Achilles tendons, Matrix Biol., 2023, 115, 32–47, DOI: 10.1016/j.matbio.2022.11.006.
  3. Bizzini M., Mannion A.F., Reliability of a new, hand-held device for assessing skeletal muscle stiffness, Clin. Biomech., 2003, 18, 5, 459–461, DOI: 10.1016/s0268-0033(03)00042-1.
  4. Camy C., Brioche T., Senni K., Bertaud A., Genovesio C., Lamy E., Fovet T. et al., Effects of hindlimb unloading and subsequent reloading on the structure and mechanical properties of Achilles tendon-to-bone attachment, Faseb J., 2022, 36, 10, e22548, DOI: 10.1096/fj.202200713R.
  5. Cardona-Ramirez S., Stoker A.M., Cook J.L., Richard M., Fibroblasts From Common Anterior Cruciate Ligament Tendon Grafts Exhibit Different Biologic Responses to Mechanical Strain, Am. J. Sports Med., 2021, 49, 1, 215–225, DOI: 10.1177/0363546520971852.
  6. Chen L., Cheng Y., Zhou L., Zhang L., Deng X., Quantitative shear wave elastography compared to standard ultrasound (qualitative B-mode grayscalesonography and quantitative power Doppler) for evaluation of achillotendinopathy in treatment-naïve individuals: A cross-sectional study, Adv. Clin. Exp. Med., 2022, 31, 8, 847–854, DOI: 10.17219/acem/147878. PMID: 35593220.
  7. Crawford S.K., Thelen D., Yakey J.M., Heiderscheit B.C., Wilson J.J., Lee K.S., Regional shear wave elastography of Achilles tendinopathy in symptomatic versus contralateral Achilles tendons, Eur. Radiol., 2023, 33, 1, 720–729, DOI: 10.1007/s00330-022-08957-3.
  8. Cronin N.J., Lichtwark G., The use of ultrasound to study muscle-tendon function in human posture and locomotion, Gait Posture, 2013, 37, 305–312, DOI: 10.1016/j.gaitpost.2012.07.024.
  9. De Marchi A., Pozza S., Cenna E., Cavallo F., Gays G., Simbula L., De Petro P., Massè A., Massazza G., In Achilles tendinopathy, the neovascularization, detected by contrast-enhanced ultrasound (CEUS), is abundant but not related to symptoms, Knee Surg. Sports Traumatol. Arthrosc., 2018, 26, 2051–2058, doi.org/10.1007/s00167-017-4710-8
  10. Feng Y.N., Li Y.P., Liu C.L., Assessing the elastic properties of skeletal muscle and tendon using shearwave ultrasound elastography and MyotonPRO, Sci. Rep., 2018, 8, 17064.
  11. Finnamore E., Waugh C., Solomons L., Transverse tendon stiffness is reduced in people with Achilles tendinopathy: a cross-sectional study, PLoS One, 2019, 14, e0211863.
  12. Fisker F.Y., Kildegaard S., Thygesen M., Grosen K., Pfeiffer-Jensen M., Acute tendon changes in intense CrossFit workout: an observational cohort study, Scand. J. Med. Sci. Sports, 2017, 27, 11, 1258–1262, DOI: 10.1111/sms.12781.
  13. Hui W., Ruyue Y.U., Meng W., Shikun W., Xingyu O., Zhiwen Y., Shuai C.H. et al., Insulin-like growth factor binding protein 4 loaded electrospun membrane ameliorating tendon injury by promoting retention of IGF-1, J. Control Release, 2023, 356, 162–174, DOI: 10.1016/j.jconrel.2023.02.039.
  14. Ianieri G., Saggini R., Marvulli R., Tondi G., Aprile A., Ranieri M., Benedetto G. et al., New approach in the assessment of the tone, elasticity and the muscular resistance: nominal scales vs MYOTON, Int. J. Immunopathol. Pharmacol., 2009, 22, 3, 21–24, DOI: 10.1177/03946320090220S304.
  15. Iwata M., Yamamoto A., Matsuo S., Hatano G., Miyazaki M., Fukaya T., Fujiwara M., Asai Y., Suzuki S., Dynamic Stretching Has Sustained Effects on Range of Motion and Passive Stiffness of the Hamstring Muscles, J. Sports Sci. Med., 2019, 11, 18 (1), 13–20.
  16. Konow N., Azizi E., Roberts T.J., Muscle power attenuation by tendon during energy dissipation, Proc. R. Soc., 2012, 279, 1108–1113, DOI: 10.1098/rspb. 2011.1435.
  17. Konow N., Roberts T., The series elastic shock absorber: tendon elasticity modulates energy dissipation by muscle during burst deceleration, Proc. Biol. Sci., 2015, 7, 282, DOI: 10.1098/rspb.2014.2800.
  18. Kubo K., Miyazaki D., Yamada K., Yata H., Shimoju S., Tsunoda N., Passive and active muscle stiffness in plantar flexors of long distance runners, J. Biomech., 2015, 48, 10, 1937–1943, DOI: 10.1016/j.jbiomech.2015.04.012.
  19. Lazarczuk S.L., Maniar N., Opar D.A., Duhig S.J., Shield A., Barrett R.S., Bourne M.N., Mechanical, Material and Morphological Adaptations of Healthy Lower Limb Tendons to Mechanical Loading: A Systematic Review and Meta-Analysis, Sports Med., 2022, 52, 10, 2405–2429, DOI: 10.1007/s40279-022-01695-y.
  20. Lee Y., Kim M., Lee H., The Measurement of Stiffness for Major Muscles with Shear Wave Elastography and Myoton: A Quantitative Analysis Study, Diagnostics (Basel), 2021, 11, 3, 524, DOI: 10.3390/diagnostics11030524.
  21. Li H., Korcari A., Ciufo D., Mendias C.L., Rodeo S.A., Buckley M.R., Loiselle A.E. et al., Increased Ca 2+ signaling through Ca V 1.2 induces tendon hypertrophy with increased collagen fibrillogenesis and biomechanical properties, BioRxiv, 2023, 24, 119–127, DOI: 10.1101/2023.01.24.525119. Preprint.
  22. Li Y.P., Liu C.L., Zhang Z.J., Feasibility of Using a Portable MyotonPRO Device to Quantify the Elastic Properties of Skeletal Muscle, Med. Sci. Monit., 2022, 28, e934121, DOI: 10.12659/MSM.934121.
  23. Liu C.L., Li Y.P., Wang X.Q., Quantifying the stiffness of Achilles tendon: intra- and Inter-Operator reliability and the effect of ankle joint motion, Med. Sci. Monit., 2018, 24, 4876–4881, DOI: 10.12659/MSM.909531.
  24. Maeda E., Kawamura R., Suzuki T., Matsumoto T., Rapid fabrication of tendon-like collagen gel via simultaneous fibre alignment and intermolecular cross-linking under mechanical loading, Biomed. Mater., 2022, 17, 4, DOI: 10.1088/1748-605X/ac7305.
  25. Magnusson S.P., Kjaer M., The impact of loading, unloading, ageing and injury on the human tendon, J. Physiol., 2019, 597, 1283–1298, DOI: 10.1113/JP275450.
  26. Mahan J., Damodar D., Trapana E., Barnhill S., Ugarte Nuno A., Smyth N.A., Aiyer A. et al., Achilles tendon complex: The anatomy of its insertional footprint on the calcaneus and clinical implications, J. Orthop., 2019, 17, 221–227, DOI: 10.1016/j.jor.2019.06.008.
  27. Miyamoto N., Hirata K., Inoue K., Hashimoto T., Muscle Stiffness of the VastusLateralis in Sprinters and Long-Distance Runners, Med. Sci. Sports Exerc., 2019, 51, 10, 2080–2087, DOI: 10.1249/MSS.0000000000002024.
  28. Morgan G.E., Martin R., Williams L., Objective assessment of stiffness in Achilles tendinopathy: a novel approach using the MyotonPRO, BMJ Open Sport Exerc. Med., 2018, 4, e000446.
  29. Mrozik K., Błach B., Kusiak M., Janusiak M., Pożarowszczyk B., Kisilewicz A., Kawczyński A. et al., Defects of plyometric training on the rectus femoris muscle stiffness among volleyball players measured by myotometry, Polish J. Sport Med., 2017, 4 (4), 273–279, DOI: 10.5604/01.3001.0010.7966.
  30. Nguyen A.P., Detrembleur C., Fisette P., Selves C., Mahaudens P., MyotonPro Is a Valid Device for Assessing Wrist Biomechanical Stiffness in Healthy Young Adults, Front Sports Act. Living, 2022, 4, 797975.
  31. Nuñez F.J., Ritzmann R., Hernandez-Abad F., Martinez J.C., Suarez-Arrones L., Muscle Architecture, Morphology, and Mechanical and Functional Properties of Biceps Femoris Long Head in Professional Soccer Players with a Prior Healed Injured Hamstring, J. Clin. Med., 2022, 11, 23, 7222, DOI: 10.3390/jcm11237222.
  32. Orner S., Kratzer W., Schmidberger J., Quantitative tissue parameters of Achilles tendon and plantar fascia in healthy subjects using a handheld myotonometer, J. Bodyw. Mov. Ther., 2018, 22, 105–111, DOI: 10.1016/j.jbmt.2017.06.015.
  33. Pożarowszczyk B., Pawlaczyk W., Smoter M., Zarzycki A., Mroczek D., Kumorek M., Witkowski K. et al., Effects of Karate Fights on Achilles Tendon Stiffness Measured by Myotonometry, J. Hum. Kinet., 2017, 56, 93–97, DOI: 10.1515/hukin-2017-0026.
  34. Ramírez-Delacruz M., Bravo-Sánchez A., Esteban-García P., Jiménez F., Abián-Vicén J., Effects of Plyometric Training on Lower Body Muscle Architecture, Tendon Structure, Stiffness and Physical Performance: A Systematic Review and Meta-analysis, Sports Med. Open., 2022, 8, 1, 40, DOI: 10.1186/s40798-022-00431-0.
  35. Rogers S.A., Whatman C.S., Pearson S.N., Kilding A.E., Assessments of Mechanical Stiffness and Relationships to Performance Determinants in Middle-Distance Runners, Int. J. Sports Physiol. Perform., 2017, 12, 10, 1329–1334, DOI: 10.1123/ijspp.2016-0594.
  36. Sawadkar P., Player D., Bozec L., Mudera V., The mechanobiology of tendon fibroblasts under static and uniaxial cyclic load in a 3D tissue engineered model mimicking native extracellular matrix, J. Tissue Eng. Regen. Med., 2020, 14, 1, 135–146, DOI: 10.1002/term.2975.
  37. Schneebeli A., Falla D., Clijsen R., Barbero M., Myotonometry for the evaluation of Achilles tendon mechanical properties: a reliability and construct validity study, BMJ Open Sport Exerc. Med., 2020, 6, 1, e000726, DOI: 10.1136/bmjsem-2019-000726.
  38. Tas S., Salkin Y., An investigation of the sex-related differences in the stiffness of the Achilles tendon and gastrocnemius muscle: Inter-observer reliability and inter-day repeatability and the effect of ankle joint motion, Foot, 2019, 41, 44–50, DOI: 10.1016/j.foot.2019.09.003
  39. Tsuchiya Y., Takakura H., Osawa S., Izawa T., Impact of high-intensity interval training on tendon related gene expression in rat Achilles tendon, Biochem. Biophys. Res. Commun., 2023, 658, 116–121, DOI: 10.1016/j.bbrc.2023.03.076.
  40. Vatovec R., Marušič J., Marković G., Šarabon N., Effects of Nordic hamstring exercise combined with glider exercise on hip flexion flexibility and hamstring passive stiffness. J. Sports Sci., 2021, 39, 20, 2370–2377, DOI: 10.1080/02640414.2021.1933350.
  41. Wang H.K., Lin K.H., Su S.C., Effects of tendon viscoelasticity in Achilles tendinosis on explosive performance and clinical severity in athletes, Scand. J. Med. Sci. Sports, 2012, 22, e147–e155, DOI: 10.1111/j.1600-0838.2012.01511.x.
  42. Winnicki K., Ochała-Kłos A., Rutowicz B., Pękala P.A., Tomaszewski K.A., Functional anatomy, histology and biomechanics of the human Achilles tendon – A comprehensive review, Ann. Anat., 2020, 229, 151461, DOI: 10.1016/j.aanat.2020.151461.
  43. Yu C., Deng L., Li L., Zhang X., Fu W., Exercise Effects on the Biomechanical Properties of the Achilles Tendon-A Narrative Review, Biology, 2022, 11, 2, 172, DOI: 10.3390/biology11020172.
  44. Yu J.F., Chang T.T., Zhang Z.J., The Reliability of MyotonPRO in Assessing Masseter Muscle Stiffness and the Effect of Muscle Contraction, Med. Sci. Monit., 2020, 26, e926578, DOI: 10.12659/MSM.926578.
  45. Zhang Z.J., Ng G.Y., Fu S.N., Effects of habitual loading on patellar tendon mechanical and morphological properties in basketball and volleyball players, Eur. J. Appl. Physiol., 2015, 115, 11, 2263–2269, DOI: 10.1007/s00421-015-3209-6.
DOI: https://doi.org/10.37190/abb-02283-2023-01 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 103 - 113
Submitted on: Sep 20, 2023
Accepted on: Jul 13, 2023
Published on: May 18, 2024
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Sebastian Szajkowski, Jarosław Pasek, Michał Dwornik, Mateusz Zajączkowski, Grzegorz Cieślar, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.