Have a personal or library account? Click to login
Tensile and flexural moduli for human orbital wall bones – comparative study Cover

Tensile and flexural moduli for human orbital wall bones – comparative study

Open Access
|May 2024

References

  1. Association W M, World Medical Association declaration of Helsinki: Ethical principles for medical research involving human subjects, JAMA – J. Am. Med. Assoc., 310, 2191–2194.
  2. Auperrin A., Delille R., Lesueur D., Bruyère K., Masson C., Drazétic P., Geometrical and material parameters to assess the macroscopic mechanical behaviour of fresh cranial bone samples, J. Biomech., 2014, 47, 1180–1185.
  3. Brunzinii A., Mandolinii M., Manierii S., Gennanii M., Mazzoli A., Pagnoni M., Iannetti G., Modugn A., Orbital wall reconstruction by selective laser sintered mould, 2017, 260–264.
  4. Chepurnyi Y., Chernogorskyi D., Petrenko O., Kopchak A., Reconstruction of Post-Traumatic Orbital Defects and Deformities with Custom-Made Patient-Specific Implants: Evaluation of the Efficacy and Clinical Outcome, Craniomaxillofacial Trauma Reconstr. Open, 2019, 3, 0039–1685505.
  5. Chiang E., Saadat L.V., Spitz J.A., Bryar P.J., Chambers C.B., Etiology of orbital fractures at a level I trauma center in a large metropolitan city, Taiwan J. Ophthalmol., 2016, 6, 26–31.
  6. Chou C., Kuo Y.R., Chen C.C., Lai C.S., Lin S.D., Huang S.H., Lee S.S., Medial orbital wall reconstruction with porous polyethylene by using a transconjunctival approach with a caruncular extension, Ann. Plast. Surg., 2017, 78, S89–S94.
  7. Favier V., Gallet P., Subsol G., Captier G., Understanding the biomechanical properties of skull base tissues is essential for the future of virtual reality endoscopic sinus and skull base surgery simulators, Clin. Exp. Otorhinolaryngol., 2019, 12, 231–232.
  8. Gunarajah D.R., Samman N., Biomaterials for repair of orbital floor blowout fractures: A systematic review, J Oral Maxillofac. Surg., 2013, 71, 550–570.
  9. Heo J.J., Chong J.-H., Han J.J., Jung S., Kook M.-S., Oh H.-K., Park H.-J., Reconstruction of the orbital wall using superior orbital rim osteotomy in a patient with a superior orbital wall fracture, Maxillofac. Plast. Reconstr. Surg., 2018, 40, 1–5.
  10. Kang S., Kwon J., Ahn C.J., Esmaeli B., Kim G.B., Kim N., Sa H.S., Generation of customized orbital implant templates using 3-dimensional printing for orbital wall reconstruction, Eye, 2018, 32, 1864–1870.
  11. Kim D.H., Kim Y., Park J.S., Kim S.W., Virtual reality simulators for endoscopic sinus and skull base surgery: The present and future, Clin. Exp. Otorhinolaryngol., 2019, 12, 12–17.
  12. Koberda M., Skorek A., Kłosowski P., Żmuda Trzebiatowski M.A., Żerdzicki K., Lemski P., Stodolska-Koberda U., Numerical and Clinical Analysis of an Eyeball Injuries Under Direct Impact, Int. J. Occup. Med. Environ. Health, 2023, 36, 263–273.
  13. Larysz D., Wolański W., Kawlewska E., Mandera M., Gzik M., Biomechanical aspects of preoperative planning of skull correction in children with craniosynostosis, Acta Bioeng. Biomech., 2012, 14, 19–26.
  14. van Leeuwen A.C., Ong S.H., Vissink A., Grijpma D.W., Bos R.R.M., Reconstruction of orbital wall defects: Recommendations based on a mathematical model, Exp. Eye Res., 2012, 97, 10–18.
  15. Mazumder M.M.G., Miller K., Bunt S., Mostayed A., Joldes G., Day R., Hart R., Wittek A., Mechanical properties of the brain-skull interface, Acta Bioeng. Biomech., 2013, 15, 3–11.
  16. Morgan E.F., Bayraktar H.H., Keaveny T.M., Trabecular bone modulus-density relationships depend on anatomic site, J. Biomech., 2003, 36, 897–904.
  17. Motherway J.A., Verschueren P., Van der Perre G., Van der Sloten J., Gilchrist M.D., The mechanical properties of cranial bone: The effect of loading rate and cranial sampling position, J. Biomech., 2009, 42, 2129–2135.
  18. Nagasao T., Miyamoto J., Shimizu Y., Jiang H., Nakajima T., What happens between pure hydraulic and buckling mechanisms of blowout fractures?, J. Cranio-Maxillofacial. Surg., 2010, 38, 306–313.
  19. Reiter M.J., Schwope R.B., Theler J.M., Postoperative CT of the orbital skeleton after trauma: Review of normal appearances and common complications, Am. J. Roentgenol., 2016, 206, 1276–1285.
  20. Schaller A., Huempfner-Hierl H., Hemprich A., Hierl T., Biomechanical mechanisms of orbital wall fractures – A transient finite element analysis, J. Cranio-Maxillofacial. Surg., 2013, 41, 710–717.
  21. Seong W.J., Kim U.K., Swift J.Q., Heo Y.C., Hodges J.S., Ko C.C., Elastic properties and apparent density of human edentulous maxilla and mandible, Int. J. Oral Maxillofac. Surg., 2009, 38, 1088–1093.
  22. Śródka W., Effect of kinematic boundary conditions on optical and biomechanical behaviour of eyeball model, Acta Bioeng. Biomech., 2006, 8, 69–77.
  23. Union Tep and the C of the E, Directive 2004/23/Ec of the European Parliament and of the Council of 31 March 2004 on setting standards of quality and safety for the donation, procurement, testing, processing, preservation, storage and distribution of human tissues and cells, Off. J. Eur. Union, 2004, 48–58.
  24. Verschueren P., Delye H., Berckmans D., Verpoest I., Goffin J., Van der Sloten J., Van Der Perre G., Analysis of fracture characteristics of cranial bone for Fe modelling, Int. Res. Counc. Biomech. Impact – 2006 Int. IRCOBI Conf. Biomech. Impact, Proc., 2006, 357–360.
  25. Ye L.-X., Sun X.-M., Zhang Y.-G., Zhang Y., Materials to facilitate orbital reconstruction and soft tissue filling in posttraumatic orbital deformaties, Plast. Aesthetic Res., 2016, 3, 86.
  26. Żerdzicki K., Lemski P., Kłosowski P., Skorek A., Żmuda Trzebiatowski M.A., Koberda M., Tensile modulus of human orbital wall bones cut in sagittal and coronal planes, PLoS One, 2021, 16, 1–15.
  27. Żmuda Trzebiatowski M.A., Kłosowski P., Skorek A., Żerdzicki K., Lemski P., Koberda M., Nonlinear dynamic analysis of the pure “buckling” mechanism during blow-out trauma of the human orbit, Sci. Rep., 2020, 10, 1–13.
  28. Żmuda Trzebiatowski M.A., Kłosowski P., Skorek A., Żerdzicki K., Lemski P., Koberda M., Validation of Hydraulic Mechanism during Blowout Trauma of Human Orbit Depending on the Method of Load Application, Appl. Bionics Biomech., 2021, 2021.
DOI: https://doi.org/10.37190/abb-02264-2023-04 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 53 - 60
Submitted on: Jun 2, 2023
Accepted on: Oct 31, 2023
Published on: May 18, 2024
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Paweł Lemski, Krzysztof Żerdzicki, Paweł Kłosowski, Andrzej Skorek, Marcin Adam Żmuda Trzebiatowski, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.