References
- A
ung T., Lim M.C., Chan Y.H., Rojanapongpun P., Chew P.T., Configuration of the drainage angle, intraocular pressure, and optic disc cupping in subjects with chronic angle-closure glaucoma, Ophthalmology, 2005, 112 (1), 28–32. - C
hen S., A NA, Roccabianca S., A microstructurally inspired constitutive model for skin mechanics, Biomech. Model Mechanobiol., 2020, 19 (1), 275–289. - C
hristensen M.B., Oberg K., Wolchok J.C., Tensile properties of the rectal and sigmoid colon: a comparative analysis of human and porcine tissue, Springerplus, 2015, 4, 142. - F
ung Y.C., Fronek K., Patitucci P., Pseudoelasticity of arteries and the choice of its mathematical expression, Am. J. Physiol., 1979, 237 (5), H620–31. - H
eys J., Barocas V.H., Mechanical characterization of the bovine iris, J. Biomech., 1999, 32 (9), 999–1003. - H
eys J.J., Barocas V.H., Taravella M.J., Modeling passive mechanical interaction between aqueous humor and iris, J. Biomech. Eng., 2001, 123 (6), 540–547. - H
umphrey J.D., Strumpf R.K., Yin F.C., A constitutive theory for biomembranes: application to epicardial mechanics, J. Biomech. Eng., 1992, 114 (4), 461–466. - J
ia Z.G., Li W., Zhou Z.R., Mechanical characterization of stomach tissue under uniaxial tensile action, J. Biomech., 2015, 48 (4), 651–658. - K
ikuchi M., Feng Z., Kosawada T., Sato D., Nakamura T., Umezu M., Stress relaxation and stress–strain characteristics of porcine amniotic membrane, Biomed. Mater. Eng., 2016, 27 (6), 603–611. - L
ee S.S., Mackey D.A., Glaucoma – risk factors and current challenges in the diagnosis of a leading cause of visual impairment, Maturitas., 2022, 163, 15–22. - L
i L., Qian X., Wang H., Hua L., Zhang H., Liu Z., Power type strain energy function model and prediction of the anisotropic mechanical properties of skin using uniaxial extension data, Med. Biol. Eng. Comput., 2013, 51 (10), 1147–1156. - L
i L., Qian X., Yan S., Hua L., Zhang H., Liu Z., Determination of the material parameters of four-fibre family model based on uniaxial extension data of arterial walls, Comput. Methods Biomech. Biomed. Engin., 2014, 17 (7), 695–703. - L
i T., Qin X., Zhang H., Li L., Liu Z.. Regional Changes of Iris Stiffness in the Rabbits Suffered from Chronic High Intraocular Pressure, J. Med. Biol. Eng., 2021, 41 (2), 165–174. - O
gden R.W., Non-Linear Elastic Deformations, Dover Publications, New York, 1997. - P
alko J.R., Pan X., Liu J., Dynamic testing of regional viscoelastic behavior of canine sclera, Exp. Eye Res., 2011, 93 (6), 825–832. - R
assoli A., Fatouraee N., Structural model for viscoelastic properties of pericardial bioprosthetic valves, Artificial Organs, 2018, 42 (6), 630–639. - S
afa B.N., Wong C.A., Ha J., Ethier C.R., Glaucoma and biomechanics, Curr. Opin. Ophthalmol., 2022, 33 (2), 80–90. - S
afshekan F., Tafazzoli -Shadpour M., Abdouss M., Shadmehr M.B., Viscoelastic Properties of Human Tracheal Tissues, J. Biomech. Eng., 2017, 139 (1), 011007. - S
chuster A.K., Fischer J.E., Vossmerbaeumer U., Curvature of iris profile in spectral domain optical coherence tomography and dependency to refraction, age and pupil size – the MIPH Eye&Health Study, Acta Ophthalmol., 2017, 95 (2), 175–181. - S
tavropoulou E.A., Dafalias Y.F., Sokolis D.P., Biomechanical and histological characteristics of passive esophagus: experimental investigation and comparative constitutive modeling, J. Biomech., 2009, 42 (16), 2654–2663. - S
u P., Yang Y., Xiao J., Song Y., Corneal hyper-viscoelastic model: derivations, experiments, and simulations, Acta Bioeng. Biomech., 2015, 17 (2), 73–84. - T
ham Y.C., Li X., Wong T.Y., Quigley H.A., Aung T., Cheng C.Y., Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis, Ophthalmology, 2014, 121 (11), 2081–2090. - W
ang W., Qian X., Song H., Zhang M., Liu Z., Fluid and structure coupling analysis of the interaction between aqueous humor and iris, Biomed. Eng. Online, 2016, 15 (Suppl. 2), 133. - W
hitcomb J.E., Barnett V.A., Olsen T.W., Barocas V.H., Ex vivo porcine iris stiffening due to drug stimulation, Exp. Eye Res., 2009, 89 (4), 456–461. - W
hitcomb J.E., Amini R., Simha N.K., Barocas V.H., Anterior-posterior asymmetry in iris mechanics measured by indentation, Exp. Eye Res., 2011, 93 (4), 475–481. - Y
oo L., Reed J., Shin A., Kung J., Gimzewski J.K., Poukens V., Goldberg R.A., Mancini R., Taban M., Moy R., Demer J.L., Characterization of ocular tissues using microindentation and Hertzian viscoelastic models, Invest. Ophthalmol. Vis. Sci., 2011, 52 (6), 3475–3482. - Z
eng Y., Yang J., Huang K., Lee Z., Lee X., A comparison of biomechanical properties between human and porcine cornea, J. Biomech., 2001, 34 (4), 533–537. - Z
hang D., Qin X., Zhang H., Li L., Time-varying regularity of changes in biomechanical properties of the corneas after removal of anterior corneal tissue, Biomed. Eng. Online, 2021, 20 (1), 113. - Z
hang D., Zhang H., Tian L., Zheng Y., Fu C., Zhai C., Li L., Exploring the Biomechanical Properties of the Human Cornea In Vivo Based on Corvis ST, Front Bioeng. Biotechnol., 2021, 9, 771763. - Z
hang H., Qian X., Li L., Liu Z., Understanding the viscoelastic properties of rabbit cornea based on stress–relaxation tests and cyclic uniaxial tests, J. Mech. Med. Biol., 2017, 17 (07), 1740035. - Z
hang H., Khan M.A., Zhang D., Qin X., Lin D., Corneal biomechanical properties after FS-LASIK with residual bed thickness less than 50% of the original corneal thickness, J. Ophthalmol., 2018, 2752945. - Z
hang K., Qian X., Mei X., Liu Z., An inverse method to determine the mechanical properties of the iris in vivo, Biomed. Eng. Online, 2014, 13, 66.