Have a personal or library account? Click to login
Fluid–structure interaction simulation for studying hemodynamics and rupture risk of patient-specific intracranial aneurysms Cover

Fluid–structure interaction simulation for studying hemodynamics and rupture risk of patient-specific intracranial aneurysms

By: Chang Ruan,  Qi Yu,  Jingyuan Zhou,  Xinying Ou,  Yi Liu and  Yu Chen  
Open Access
|May 2024

References

  1. Acevedo-Bolton G., Jou L.-D., Dispensa B.P., Lawton M.T., Higashida R.T., Martin A.J., Saloner D., Estimating the hemodynamic impact of interventional treatments of aneurysms: numerical simulation with experimental validation: technical case report, Neurosurgery, 2006, 59 (2), E429–E430.
  2. Amenta P.S., Yadla S., Campbell P.G., Maltenfort M.G., Dey S., Ghosh S., Gonzalez L.F., Analysis of nonmodifiable risk factors for intracranial aneurysm rupture in a large, retrospective cohort, Neurosurgery, 2012, 70 (3), 693–701.
  3. Brisman J.L., Song J.K., Newell D.W., Cerebral aneurysms, New England Journal of Medicine, 2006, 355 (9), 928–939.
  4. Castro M.A., Putman C.M., Sheridan M.J., Cebral J.R., Hemodynamic Patterns of Anterior Communicating Artery Aneurysms: A Possible Association with Rupture, American Journal of Neuroradiology, 2009, 30 (2), 297, DOI: 10.3174/ajnr.A1323.
  5. Cebral J.R., Castro M.A., Appanaboyina S., Putman C.M., Millan D., Frangi A.F., Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity, IEEE Transactions on Medical Imaging, 2005, 24 (4), 457–467, DOI: 10.1109/TMI.2005.844159.
  6. Cebral J.R., Meng H., Counterpoint: realizing the clinical utility of computational fluid dynamics – closing the gap, Am. Soc. Neuroradiology, 2012, Vol. 33, 396–398.
  7. Chaichana T., Sun Z., Jewkes J., Hemodynamic impacts of left coronary stenosis: A patient-specific analysis, Acta Bioeng. Biomech., 2013, 15 (3).
  8. D’Arcangelo D., Ambrosino V., Giannuzzo M., Gaetano C., Capogrossi M.C., Axl receptor activation mediates laminar shear stress anti-apoptotic effects in human endothelial cells, Cardiovascular Research, 2006, 71 (4), 754–763.
  9. Fukazawa K., Ishida F., Umeda Y., Miura Y., Shimosaka S., Matsushima S., Suzuki H., Using computational fluid dynamics analysis to characterize local hemodynamic features of middle cerebral artery aneurysm rupture points, World Neurosurgery, 2015, 83 (1), 80–86.
  10. Hejčl A., Švihlová H., Sejkorová A., Radovnický T., Adámek D., Hron J., Sameš M., Computational fluid dynamics of a fatal ruptured anterior communicating artery aneurysm, Journal of Neurological Surgery, Part A: Central European Neurosurgery, 2017, 78 (06), 610–616.
  11. Hoi Y., Meng H., Woodward S.H., Bendok B.R., Hanel R.A., Guterman L.R., Hopkins L.N., Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study, Journal of Neurosurgery, 2004, 101 (4), 676–681, DOI: 10.3171/jns.2004.101.4.0676.
  12. Isaksen J.G., Bazilevs Y., Kvamsdal T., Zhang Y., Kaspersen J.H., Waterloo K., Ingebrigtsen T., Determination of Wall Tension in Cerebral Artery Aneurysms by Numerical Simulation, Stroke, 2008, 39 (12), 3172–3178, DOI: 10.1161/STROKEAHA.107.503698.
  13. Ivanov D., Dol A., Pavlova O., Aristambekova A., Modeling of human circle of Willis with and without aneurisms, Acta Bioeng. Biomech., 2014, 16 (2), 121–129.
  14. Ivanov D., Dol A., Polienko A., Patient-specific hemodynamics and stress-strain state of cerebral aneurysms, Acta Bioeng. Biomech., 2016, 18 (2), 9–17.
  15. Jiang Y., Lu G., Ge L., Huang L., Wan H., Wan J., Zhang X., Rupture point hemodynamics of intracranial aneurysms: case report and literature review, Annals of Vascular Surgery-Brief Reports and Innovations, 2021, 1 (2), 100022.
  16. Jou L.-D., Wong G., Dispensa B., Lawton M.T., Higashida R.T., Young W.L., Saloner D., Correlation between lumenal geometry changes and hemodynamics in fusiform intracranial aneurysms, American Journal of Neuroradiology, 2005, 26 (9), 2357–2363.
  17. Lee C.J., Zhang Y., Takao H., Murayama Y., Qian Y., The influence of elastic upstream artery length on fluid–structure interaction modeling: A comparative study using patient-specific cerebral aneurysm, Medical Engineering and Physics, 2013, 35 (9), 1377–1384, https://doi.org/10.1016/j.medengphy.2013.03.009
  18. Li G., Song X., Wang H., Liu S., Ji J., Guo Y., Wang X., Prediction of cerebral aneurysm hemodynamics with porous-Medium models of flow-diverting stents via deep learning, Frontiers in Physiology, 2021, 12, 733444.
  19. Li W., Wang S., Tian Z., Zhu W., Zhang Y., Zhang Y., Liu J., Discrimination of intracranial aneurysm rupture status: patient-specific inflow boundary may not be a must-have condition in hemodynamic simulations, Neuroradiology, 2020, 62, 1485–1495.
  20. Liu J., Fan J., Xiang J., Zhang Y., Yang X., Hemodynamic characteristics of large unruptured internal carotid artery aneurysms prior to rupture: a case control study, Journal of NeuroInterventional Surgery, 2016, 8 (4), 367–372.
  21. Medero R., Ruedinger K., Rutkowski D., Johnson K., Roldán-Alzate A., In vitro assessment of flow variability in an intracranial aneurysm model using 4D flow MRI and tomographic PIV, Annals of Biomedical Engineering, 2020, 48, 2484–2493.
  22. Meng H., Wang Z., Hoi Y., Gao L., Metaxa E., Swartz D.D., Kolega J., Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation, Stroke, 2007, 38 (6), 1924–1931.
  23. Menter F.R., Two-equation eddy-viscosity turbulence models for engineering applications, AIAA Journal, 1994, 32 (8), 1598–1605.
  24. Mo X., Meng Q., Yang X., Li H., The impact of inflow angle on aneurysm hemodynamics: a simulation study based on patient-specific intracranial aneurysm models, Frontiers in Neurology, 2020, 11, 534096.
  25. Murayama Y., Fujimura S., Suzuki T., Takao H., Computational fluid dynamics as a risk assessment tool for aneurysm rupture, Neurosurgical Focus, 2019, 47 (1), E12.
  26. Nixon A.M., Gunel M., Sumpio B.E., The critical role of hemodynamics in the development of cerebral vascular disease: a review, Journal of Neurosurgery, 2010, 112 (6), 1240–1253.
  27. Oliveira I.L., Cardiff P., Baccin C.E., Gasche J.L., A numerical investigation of the mechanics of intracranial aneurysms walls: Assessing the influence of tissue hyperelastic laws and heterogeneous properties on the stress and stretch fields, Journal of the Mechanical Behavior of Biomedical Materials, 2022, 136, 105498, https://doi.org/10.1016/j.jmbbm.2022.105498
  28. Oyejide A.J., Awonusi A.A., Ige E.O., Fluid-structure interaction study of hemodynamics and its biomechanical influence on carotid artery atherosclerotic plaque deposits, Medical Engineering and Physics, 2023, 117, 103998, https://doi.org/10.1016/j.medengphy.2023.103998
  29. Philip N.T., Bolem S., Sudhir B.J., Patnaik B.S.V., Hemodynamics and bio-mechanics of morphologically distinct saccular intracranial aneurysms at bifurcations: Idealised vs patient-specific geometries, Computer Methods and Programs in Biomedicine, 2022, 227, 107237, https://doi.org/10.1016/j.cmpb.2022.107237
  30. Qing W., Wang W.-Z., Fei Z.-M., Liu Y.-Z., Cao Z.-M., Simulation of blood flow in intracranial ICA-pcoma aneurysm via computational fluid dymamics modeling, Journal of Hydrodynamics, Ser. B, 2009, 21 (5), 583–590.
  31. Qiu X.-N., Fei Z.-M., Zhang J., Cao Z.-M., Influence of high-porosity mesh stent on hemodynamics of intracranial aneurysm: A computational study, Journal of Hydrodynamics, 2013, 25 (6), 848–855.
  32. Razavi A., Shirani E., Sadeghi M., Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models, Journal of Biomechanics, 2011, 44 (11), 2021–2030.
  33. Reorowicz P., Obidowski D., Kłosinski P., Szubert W., Stefańczyk L., Jóźwik K., Numerical simulations of the blood flow in the patient-specific arterial cerebral circle region, Journal of Biomechanics, 2014, 47 (7), 1642–1651, https://doi.org/10.1016/j.jbiomech.2014.02.039.
  34. Reymond P., Crosetto P., Deparis S., Quarteroni A., Stergiopulos N., Physiological simulation of blood flow in the aorta: Comparison of hemodynamic indices as predicted by 3-D FSI, 3-D rigid wall and 1-D models, Medical Engineering and Physics, 2013, 35 (6), 784–791, https://doi.org/10.1016/j.medengphy.2012.08.009
  35. Rostam-Alilou A.A., Jarrah H.R., Zolfagharian A., Bodaghi M., Fluid–structure interaction (FSI) simulation for studying the impact of atherosclerosis on hemodynamics, arterial tissue remodeling, and initiation risk of intracranial aneurysms, Biomechanics and Modeling in Mechanobiology, 2022, 21 (5), 1393–1406.
  36. Saqr K.M., Rashad S., Tupin S., Niizuma K., Hassan T., Tominaga T., Ohta M., What does computational fluid dynamics tell us about intracranial aneurysms? A meta-analysis and critical review, Journal of Cerebral Blood Flow and Metabolism, 2020, 40 (5), 1021–1039.
  37. Shojima M., Oshima M., Takagi K., Torii R., Nagata K., Shirouzu I., Kirino T., Role of the bloodstream impacting force and the local pressure elevation in the rupture of cerebral aneurysms, Stroke, 2005, 36 (9), 1933–1938.
  38. Tian Z., Li X., Wang C., Feng X., Sun K., Tu Y., Duan C., Association Between Aneurysmal Hemodynamics and Rupture Risk of Unruptured Intracranial Aneurysms, Frontiers in Neurology, 2022, 13.
  39. Valencia A., Morales H., Rivera R., Bravo E., Galvez M., Blood flow dynamics in patient-specific cerebral aneurysm models: the relationship between wall shear stress and aneurysm area index, Medical Engineering and Physics, 2008, 30 (3), 329–340.
  40. Yi H., Yang Z., Johnson M., Bramlage L., Ludwig B., Developing an in vitro validated 3D in silico internal carotid artery sidewall aneurysm model, Frontiers in Physiology, 2022, 13, 1024590.
DOI: https://doi.org/10.37190/abb-02247-2023-03 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 73 - 85
Submitted on: May 9, 2023
Accepted on: Nov 28, 2023
Published on: May 18, 2024
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Chang Ruan, Qi Yu, Jingyuan Zhou, Xinying Ou, Yi Liu, Yu Chen, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.