Have a personal or library account? Click to login
The effect of three run-up techniques on kinetic and kinematic variables of the stag ring leap with throw-catch of the ball in rhythmic gymnastics Cover

The effect of three run-up techniques on kinetic and kinematic variables of the stag ring leap with throw-catch of the ball in rhythmic gymnastics

Open Access
|Apr 2023

References

  1. Aagaard P., Simonsen E.B., Andersen JL., Magnusson P., Dyhre-Poulsen P., Increased Rate of Force Development and Neural Drive of Human Skeletal Muscle Following Resistance Training, J. Appl. Physiol., 2002, 93 (4), 1318–1326.
  2. Aji-Putra R.B., Soenyoto T., Darmawan A., Irsyada R., Contribution of Leg Flexibility, Limb Length, Leg Power for the Split Leap Skills of Rhythmic Gymnastics Athletes, Int. J. Hum. Mov. Sports Sci., 2021, 9 (4), 648–653, https://doi.org/10.13189/saj.2021.090407.
  3. Akkari-Ghazouani H., Mkaouer B., Amara S., Chtara M., Kinetic and Kinematic Analysis of Three Different Execution Modes of Stag Leap With and Without Throw-Catch Ball in Rhythmic Gymnastics, Sci. Gymnastics. J., 2020, 12 (3), 255–434.
  4. Akkari-Ghazouani H., Amara S., Jemni M., Chtara M., Mkaouer B., Effect of Assemblé-Step on Kinetic and Kinematic Parameters of Stag Ring Leaps With and Without Throw-Catch of The Ball in Rhythmic Gymnastics, Sci. Gymnastics. J., 2022, 14 (3), 299–310, https://doi.org/10.52165/sgj.14.3.299-310.
  5. Akkari-Ghazouani H., Mkaouer B., Amara S., Jemni M., Chtara M., Effect of Glissade-Step on Kinetic and Kinematic Variables of Stag Ring Leaps With and Without Throw-Catch of The Ball in Rhythmic Gymnastics, Sports. Biomech., 2023, 22 (2), 222–234, https://doi.org/10.1080/14763141.2022.2087535.
  6. Ashby B.M., Heegaard J.H., Role of Arm Motion in the Standing Long Jump, J. Biomech., 2002, 35 (12), 1631–1637, https://doi.org/10.1016/S0021-9290(02)00239-7.
  7. Batista A., Lemos M.E., Lebre E., Ávila-Carvalho L., Active and Passive Lower Limb Flexibility in High Level Rhythmic Gymnastics, Sci. Gymnastics. J., 2015, 7 (2), 55–66.
  8. Batista A., Garganta R., Ávila-Carvalho L., Body Difficulties in Rhythmic Gymnastics Routines, Sci. Gymnastics. J., 2019, 11 (1), 37–55.
  9. Botti M., do Nascimento J.V., The Teaching-Learning- Training Process in Rhytmic Gymnastics Supported by the Ecological Theory, Sci. Gymnastics. J., 2011, 3 (1), 35–48.
  10. Brønd J.C., Elbæk L., Problem Based Learning and the Use of Digital Tools, for Improving Use and Understanding of Biomechanics in Practical Sports Subjects, [in:] Froberg K., Skovgaard T., Proceedings of the 2nd NORDPLUS-IDROTT Conference, University of Southern Denmark, Odense, Region of Southern Denmark, Denmark, 2013, https://www.sdu.dk/-/media/sidste_chance/files/om_sdu/institutter/iob/forskningsnetvaerk/nordplus2013/abstractbook.pdf
  11. Coppola S., Albano D., Sivoccia I., Vastola R., Biomechanical Analysis of a Rhythmic Gymnastics Jump Performed Using Two Run-Up Techniques, J. Phys. Educ. Sport., 2020, 20 (1), 37–42, https://doi.org/10.7752/jpes.2020.01005.
  12. De Leva P., Adjustments to Zatsiorsky-Seluyanov’s Segment Inertia Parameters, J. Biomech., 1996, 29 (9),1223–1230.
  13. Despina T., George D., George T., Sotiris P., Alessandra D.C., George K., Maria R., Stavros K., Short-Term Effect of Whole-Body Vibration Training on Balance, Flexibility and Lower Limb Explosive Strength in Elite Rhythmic Gymnasts, Hum. Mov. Sci., 2014, 33, 149–158, https://doi.org/10.1016/j.humov.2013.07.023.
  14. di Cagno A., Baldari C., Battaglia C., Guidetti L., Piazza M., Anthropometric Characteristics Evolution in Elite Rhythmic Gymnasts, Ital. J. Anat. Embryol., 2008, 113 (1), 29–36.
  15. di Cagno A., Baldari C., Battaglia C., Gallotta M.C., Videira M., Piazza M., Guidetti L., Preexercise Static Stretching Effect on Leaping Performance in Elite Rhythmic Gymnasts, J. Strength. Cond. Res., 2010, 24 (8), 1995–2000.
  16. dos Reis Furtado L.N., de Toledo E., Fernandes Antualpa K., Carbinatto M.V., Ballet Movements in Rhythmic Gymnastics Routines: An Analisys From the Last Two Code of Points (2013–2016 and 2017–2020), Sci. Gymnastics. J., 2020, 12 (3), 395–406.
  17. Faul F., Erdfelder E., Buchner A., Lang A.G., Statistical Power Analyses Using G*Power 3.1: Tests for Correlation and Regression Analyses, Behav. Res. Methods., 2009, 41 (4), 1149–1160, https://doi.org/10.3758/BRM.41.4.1149.
  18. FIG, Code Of Point Rhythmic Gymnastics, Fédération Internationale de Gymnastique, Lausanne Suissland, 2020.
  19. Frutuoso A.S., Diefenthaeler F., Vaz M.A., Freitas Cde L., Lower Limb Asymmetries in Rhythmic Gymnastics Athletes, Int. J. Sports. Phys. Ther., 2016, 11, 34–43.
  20. Gateva M., Modified Field Test for Determining the Specific Endurance in Rhythmic Gymnastics, J. Appl. Sports. Sci., 2019, 3 (1), 3–12, https://doi.org/10.37393/jass.2019.01.1
  21. Gorwa J., Dworak L.B., Michnik R., Jurkojć J., Kinematic analysis of modern dance movement “stag jump” within the context of impact loads, injury to the locomotor system and its prevention, Med. Sci. Monit., 2014, 20, 1082–1089, https://doi.org/10.12659/msm.890126.
  22. Gorwa J., Michnik R., Nowakowska-Lipiec K., Jurkojć J., Jochymczyk-Woźniak K., Is it possible to reduce loads of the locomotor system during the landing phase of dance figures? Biomechanical analysis of the landing phase in Grand Jeté, Entrelacé and Ballonné, Acta. Bioeng. Biomech., 2019, 21 (4), 111–121, https://doi.org/10.37190/ABB-01429-2019-02.
  23. Hopkins W.G., A New View af Statistics. A Scale of Magnitudes for Effect Statistics, Sport. Sci., 2002, www.sportsci.org/resource/stats/effectmag.html
  24. Hopkins W.G., Marshall S.W., Batterham A.M., Hanin J., Progressive Statistics for Studies in Sports Medicine and Exercise Science, Med. Sci. Sports. Exerc., 2009, 41 (1), 3–13, https://doi.org/10.1249/MSS.0b013e31818cb278.
  25. Huang C., Liu G.C., Sheu T.Y., Kinematic Analysis of The Volleyball Back Row Jump Spike, Proceedings of the XVII International Symposium on Biomechanics in Sports, Perth, Western Australia, Australia, 1999, https://ojs.ub.uni-konstanz.de/cpa/article/view/4049.
  26. Jemni M., The Science of Gymnastics: Advanced Concepts, Routledge, 2017.
  27. Jensen R.L., Rate of Force Development and Time to Peak Force During Plyometric Exercises, Proceedings of the XXVI Conference of the International Society of Biomechanics in Sports, Northern Michigan University, 2008, https://commons.nmu.edu/cgi/viewcontent.cgi?article=1027&context=facwork_conferencepapers
  28. Komanthi K., Theodosis E., Apostolos S., Eating Disorders in the World of Sport: The Experiences of Rhythmic Gymnasts, Biol. Exerc., 2012, 8 (2), 19–31, https://doi.org/10.4127/jbe.2012.0057.
  29. Kwitniewska A., Dornowski M., Hökelmann A., Quantitative and Qualitative Analysis of International Standing in Group Competition in the Sport of Rhythmic Gymnastics, Balt. J. Health. Phys. Act., 2009, 1 (2), 118–125, https://doi.org/10.2478/v10131-009-0014-9.
  30. Laffaye G., Wagner P., Eccentric Rate of Force Development Determines Jumping Performance, Comput. Methods. Biomech. Biomed. Engin., 2013, 16, 82–83.
  31. Mkouer B., Amara S., Tabka Z., Split Leap With and Without Ball Performance Factors in Rhythmic Gymnastic, Sci. Gymnastics. J., 2012, 4 (2), 75–81.
  32. Nemtsev O., Doronin A., Nemtseva N., Sukhanov S., Shubin M., Features of Takeoff Phase in Long Jumps With Various Run-Up Lengths, Proceedings of the XXXII International Conference of Biomechanics in Sports, Johnson City, TN, USA, 2014, https://ojs.ub.uni-konstanz.de/cpa/article/view/6066
  33. Oddsson L., What Factors Determine Vertical Jumping Height?, Proceedings of the V International Symposium on Biomechanics in Sports, Athens, Greece, 1987, https://ojs.ub.uni-konstanz.de/cpa/article/view/2325.
  34. Polat S.Ç., The Effect of Two Different Take Offs on Split Leap and Stag Leap With Ring Parameters in Rhythmic Gymnastics, Pedagogical. Res., 2018, 3 (4), 13, https://doi.org/10.20897/pr/3905.
  35. Purenović T., Bubanj S., Popović R., Stanković R., Bubanj R., Comparative Kinematics Analysis of Different Split Front Leaps, Sport. Sci., 2010, 3 (1), 13–20.
  36. Putra R.B.A., Soenyoto T., Darmawan A., Irsyada R., Basic Movements of the Split Leap Rhythmic Gymnastics, Proceedings of the 5th International Seminar of Public Health and Education, ISPHE, Universitas Negeri Semarang, Semarang, Indonesia, 2020, https://eudl.eu/doi/10.4108/eai.22-7-2020.2300304.
  37. Rodríguez-Rosell D., Pareja-Blanco F., Aagaard P., González-Badillo J.J., Physiological and Methodological Aspects of Rate of Force Development Assessment in Human Skeletal Muscle, Clin. Physiol. Funct. Imaging., 2018, 38 (5), 743–762, https://doi.org/10.1111/cpf.12495.
  38. Sierra-Palmeiro E., Bobo-Arce M., Pérez-Ferreirós A., Fernández-Villarino M.A., Longitudinal Study of Individual Exercises in Elite Rhythmic Gymnastics, Front. Psychol., 2019, 10, 1496, https://doi.org/10.3389/fpsyg.2019.01496.
  39. Skopal L., Netto K., Aisbett B., Takla A., Castricum T., The Effect of a Rhythmic Gymnastics-Based Power-Flexibility Program on the Lower Limb Flexibility and Power of Contemporary Dancers, Int. J. Sports. Phys. Ther., 2020, 15 (3), 343–364.
  40. Tai W.H., Wang L.I., Peng H.T., Biomechanical Comparisons of One-Legged and Two-Legged Running Vertical Jumps, J. Hum. Kinet., 2018, 64 (1), 71–76, https://doi.org/10.1515%2Fhukin-2017-0185.
  41. Vanrenterghem J., Lees A., Lenoir M., Aerts P., De Clercq D., Performing The Vertical Jump: Movement Adaptations For Submaximal Jumping, Hum. Mov. Sci., 2004, 22 (6), 713–727.
  42. Wagner J.M., Rhodes J.A., Patten C., Reproducibility and Minimal Detectable Change of Three-Dimensional Kinematic Analysis of Reaching Tasks in People With Hemiparesis After Stroke, Phys. Ther., 2008, 88 (5), 652–663, https://doi.org/10.2522/ptj.20070255.
  43. Zar J., Multiple comparisons, Bio. Stat. Anal., 1984, 1, 185–205.
DOI: https://doi.org/10.37190/abb-02186-2023-02 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 109 - 118
Submitted on: Jan 23, 2023
Accepted on: Mar 31, 2023
Published on: Apr 26, 2023
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Hounaida Akkari-Ghazouani, Samiha Amara, Mokhtar Chtara, Bessem Mkaouer, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.