Have a personal or library account? Click to login
Some aspects related to the indentation-based viscoelastic modelling of trabecular bone tissue Cover

Some aspects related to the indentation-based viscoelastic modelling of trabecular bone tissue

Open Access
|Jan 2023

References

  1. Atthapreyangkul A., Hoffman M., Pearce G., Effect of geometrical structure variations on the viscoelastic and anisotropic behaviour of cortical bone using multi-scale finite element modelling, J. Mech. Behav. Biomed. Mater., 2021, 113, 104153.
  2. Biswas S., Dasgupta P., Pramanik P., Chanda A., Macro and micro indentation behavior of the cortical part of human femur, Procedia Materials Science, 2014, 5, 2320–2329.
  3. Böhme B., Laurent C., Milis O., Ponthot J.-P., Balligand M., Determination of Canine Long Bone Ultimate Tensile Strain by Digital Image Correlation, J. Orthop. Res. Ther., 2022, 7, 1221, DOI: 10.29011/2575-8241.001221.
  4. Cyganik Ł., Binkowski M., Kokot G., Rusin T., Popik P., Bolechała F., Nowak R., Wróbel Z., John A., Prediction of Young’s modulus of trabeculae in microscale using macroscale’s relationships between bone density and mechanical properties, J. Mech. Behav. Biomed. Mater., 2014, 36, 120–134.
  5. Garcia D., Zysset P.K., Charlebois M., Curnier A., A three-dimensional elastic plastic damage constitutive law for bone tissue, Biomech. Model Mechanobiol., 2009, 8, 149–165.
  6. Ghanbari J., Naghdabadi R., Nonlinear hierarchical multiscale modelling of cortical bone considering its nanoscale microstructure, J. Biomech., 2009, 42, 1560–1565.
  7. Goh S.M., Charalambides M.N., Williams J.G., Determination of the constitutive constants of non-linear viscoelastic materials, Mech. Time-Depend Mater., 2004, 8, 255–268.
  8. Hammer N., Voigt C., Werner M., Hoffmann F., Bente K., Kunze H., Scholz R., Steinke H., Ethanol and formaldehyde fixation irreversibly alter bones’ organic matrix, J. Mech. Behav. Biomed. Mater., 2014, 29, 252–258.
  9. Harrison N.M., McDonnell P.F., Kennedy O.D., O’Brien F.J., McHugh P.E., Heterogeneous linear elastic trabecular bone modelling using micro-CT attenuation data and experimentally measured heterogeneous tissue properties, J. Biomech., 2008, 41 (11), 2589–2596.
  10. Hong J., Cha H., Park Y., Lee S., Khang G., Kim Y., Elastic moduli and Poisson’s ratios of microscopic human femoral trabeculae, Proceedings of 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing 2007, IFMBE16, 2007, 274–277.
  11. Jankowski K., Pawlikowski M., Domański J., Multi-scale constitutive model of human trabecular bone, Continuum Mech. Thermodyn., 2022, DOI: doi.org/10.1007/s00161-022-01161-0.
  12. Jaziri A., Rahmoun J., Naceur H., Drazetic P., Markiewicz E., Multi-scale modelling of the trabecular bone elastoplastic behaviour under compression loading, Eur. Comput. Mech., 2012, 21, 254–269.
  13. Johnson T.P.M., Socrate S., Boyce M.C., A viscoelastic, viscoplastic model of cortical bone valid at low and high strain rates, Acta Biomater., 2010, 6, 4073–4080.
  14. Jonas J., Burns J., Abel E.W., Cresswell M.J., Strain J.J., Paterson C.R., A technique for the tensile testing of demineralised bone, J. Biomech., 1993, 26, 271–276.
  15. Klinger S., Greinwald M., Augat P., Hollensteiner M., Mechanical and morphometric characterization of custom-made trabecular bone surrogates, J. Mech. Behav. Biomed. Mater., 2022, 129, 105146.
  16. Linden J.C., Birkenhager-Frenkel D.H., Verhaar J.A.N., Weinans H., Trabecular bone’s mechanical properties are affected by its non-uniform mineral distribution, J. Biomech., 2001, 34, 1573–1580.
  17. Makuch A.M., Skalski K.R., Human cancellous bone mechanical properties and penetrator geometry in nanoindentation tests, Acta Bioeng. Biomech., 2018, 20 (3), 153–164.
  18. Mooney M., A theory of large elastic deformation, J. Appl. Phys., 1940, 11, 582–592.
  19. Natali A.N., Carniel E.L., Pavan P.G., Constitutive modelling of inelastic behaviour of cortical bone, Med. Eng. Phys., 2008, 30, 905–912.
  20. Olesiak S.E., Oyen M.L., Ferguson V.L., Viscous-elasticplastic behavior of bone using Berkovich nanoindentation, Mech. Time-Depend. Mater., 2010, 14, 111–124.
  21. Oliver W.C., Pharr G.M., An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, J. Mater. Res., 1992, 7 (6), 1564–1583.
  22. Oyen M.L., Sensitivity of polymer nanoindentation creep measurements to experimental variables, Acta Mater., 2007, 55, 3633–3639.
  23. Oyen M.L., Cook R.F., Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials, J. Mater. Res., 2003, 18, 139–150.
  24. Pawlikowski M., Non-linear approach in visco-hyperelastic constitutive modelling of polyurethane nanocomposite, Mech. Time-Depend. Mater., 2013, 18, 1–20.
  25. Pawlikowski M., Barcz K., Non-linear viscoelastic constitutive model for bovine cortical bone tissue, Biocybern. Biomed. Eng., 2016, 36, 491–498.
  26. Pawlikowski M., Jankowski K., Skalski K., New microscale constitutive model of human trabecular bone based on depth sensing indentation technique, J. Mech. Behav. Biomed. Mater., 2018, 85, 162–169.
  27. Pawlikowski M., Skalski K., Sowiński T., Hyper-elastic modelling of intervertebral disc polyurethane implant, Acta Bioeng. Biomech., 2013, 15, 43–50.
  28. Porter D., Pragmatic multiscalemodelling of bone as a natural hybrid nanocomposite, Mater. Sci. Eng., 2004, A 365, 38–45.
  29. Rahmoun J., Naceur H., Morvan H., Drazetic P., Fontaine C., Mazeran P.E., Experimental characterization and micromechanical modeling of the elastic response of the human humerus under bending impact, Mater. Sci. Eng., 2020, C 117, 111276.
  30. Rho J.Y., Tsui T.Y., Pharr G.M., Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation, Biomaterials, 1997, 18, 1325–1330.
  31. Sakai M., Shimizu S., Indentation rheometry for glass-forming materials, J. Non-Crystalline Solids, 2001, 282, 236–247.
  32. Shimizu S., Yanagimoto T., Sakai M., Pyramidal indentation load–depth curve of viscoelastic materials, J. Mater. Res., 1999, 14, 4075–4086.
  33. Smith L.J., Schirer J.P., Fazzalari N.L., The role of mineral content in determining the micromechanical properties of discrete trabecular bone remodeling packets, J. Biomech., 2010, 43, 3144–3149.
  34. Stocchero M., Jinno Y., Toia M., Jimbo R., Lee C., Yamaguchi S., Imazato S., Becktor J.P., In silico multi-scale analysis of remodeling peri-implant cortical bone: a comparison of two types of bone structures following an undersized and non-undersized technique, J. Mech. Behav. Biomed. Mater., 2020, 103, 103598.
  35. Turner C.H., Wang T., Burr D.B., Shear Strength and Fatigue Properties of Human Cortical Bone Determined from Pure Shear Tests, Calcif Tissue Int., 2001, 69 (6), 373–378.
  36. Unger S., Blauth M., Schmoelz W., Effects of three different preservation methods on the mechanical properties of human and bovine cortical bone, Bone, 2010, 47, 1048–1053.
  37. Wofram U., Wilke H.-J., Zysset P.K., Rehydration of vertebral trabecular bone: Influences on its anisotropy, its stiffness and the indentation work with a view to age, gender and vertebral level, Bone, 2010, 46, 348–354.
  38. Wu D., Isaksson P., Ferguson S.J., Persson C., Young’s modulus of trabecular bone at the tissue level: A review, Acta Biomater., 2018, 78, 1–12.
  39. Zlámal P., Jiroušek O., Kytyr D., Doktor T., Indirect determination of material model parameters for single trabecula based on nanoindentation and three-point bending test, Eng. Mech., 2012, 1611–1620.
  40. Zysset P.K., Indentation of bone tissue: a short review, Osteoporos. Int., 2009, 20, 1049–1055.
DOI: https://doi.org/10.37190/abb-02154-2022-02 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 169 - 177
Submitted on: Nov 14, 2022
Accepted on: Jan 17, 2023
Published on: Jan 25, 2023
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Krzysztof Jankowski, Marek Pawlikowski, Katarzyna Barcz, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.