Have a personal or library account? Click to login
Mechanical properties of the porcine pericardium extracellular matrix cross-linked with glutaraldehyde and tannic acid Cover

Mechanical properties of the porcine pericardium extracellular matrix cross-linked with glutaraldehyde and tannic acid

Open Access
|Jan 2023

References

  1. Aguiari P., Fiorese M., Iop L., Gerosa G., Bagno A., Mechanical testing of pericardium for manufacturing prosthetic heart valves, Interact. Cardiovasc. Thorac. Surg., 2016, 22 (1), 72–84, DOI: 10.1093/icvts/ivv282.
  2. Arbeiter D., Grabow N., Wessarges Y., Sternberg K., Schmitz K.P., Suitability of porcine pericardial tissue for heart valve engineering: Biomechanical properties, Biomed. Tech. (Berl.), 2012, 57 (Suppl. 1), 882–883, DOI: 10.1515/bmt-2012-4332.
  3. Baldwin A., Booth B.W., Biomedical applications of tannic acid, J. Biomater. Appl., 2022, 36 (8), 1503–1523, DOI: 10.1177/08853282211058099.
  4. Bondarenko N.A., Surovtseva M.A., Lykov P., Kim I.I., Zhuravleva I.Y., Poveschenko V., Cytotoxicity of xenogeneic pericardium preserved by epoxy cross-linking agents, Sovrem. Tehnol. v Med., 2021, 13 (4), 27–33, DOI: 10.17691/stm2021.13.4.03.
  5. Braga-Vilela A.S., Pimentel E.R., Marangoni S., Toyama M.H., Campos Vidal B. de, Extracellular matrix of porcine pericardium: Biochemistry and collagen architecture, J. Membr. Biol., 2008, 221 (1), 15–25, DOI: 10.1007/s00232-007-9081-5.
  6. Caballero A., Sulejmani F., Martin C., Pham T., Sun W., Evaluation of transcatheter heart valve biomaterials: Biomechanical characterization of bovine and porcine pericardium, J. Mech. Behav. Biomed. Mater., 2017, 75, 486–494, DOI: 10.1016/j.jmbbm.2017.08.013.
  7. Chuong C.J., Fung Y.C., Three-Dimensional Stress Distribution in Arteries, J. Biomech. Eng., 1983, 105 (3), 268–274, DOI: 10.1115/1.3138417.
  8. Cohn D., Younes H., Milgarter E., Uretzky G., Mechanical behaviour of isolated pericardium: species, isotropy, strain rate and collagenase effect on pericardial tissue, Clin. Mater., 1987, 2 (2), 115–124, DOI: 10.1016/0267-6605(87)90030-8.
  9. Courtman D.W., Pereira C.A., Kashef V., Donna M., Lee J.M., Wilson G.J., Development of a pericardial acellular matrix biomaterial: Biochemical and mechanical effects of cell extraction, J. Biomed. Mater. Res., 1994, 28 (6), 655–666, DOI: 10.1002/jbm.820280602.
  10. Cwalina B., Turek A., Jastrzębska M., Fluder A., Kostka P., Stress changes in pericardium tissue during its modification with tannic acid, Inż. Biomat., 2002, 5 (23–25), 67–70.
  11. Cwalina B., Turek A., Nożyński J., Jastrzębska M., Nawrat Z., Structural changes in pericardium tissue modified with tannic acid, Int. J. Artif. Organs, 2005, 28 (6), 648–653, DOI: 10.1177/039139880502800614.
  12. Debelle L., Alix A.J.P., The structures of elastins and their function, Biochimie, 1999, 81 (10), 981–994, DOI: 10.1016/S0300-9084(99)00221-7.
  13. Ferrans V., Hilbert S., Jones M., Biomaterials. Replacement Cardiac Valves, 1991.
  14. Grabenwöger M., Sider J., Fitzal F., Zelenka C., Windberger U., Grimm M., i wsp., Impact of glutaraldehyde on calcification of pericardial bioprosthetic heart valve material, Ann. Thorac Surg., 62 (3), 772–777, 1996.
  15. Isenburg J.C., Simionescu D.T., Vyavahare N.R., Tannic acid treatment enhances biostability and reduces calcification of glutaraldehyde fixed aortic wall, Biomaterials, 2005, 26 (11), 1237–1245, DOI: 10.1016/j.biomaterials.2004.04.034.
  16. Isenburg J.C., Simionescu D.T., Vyavahare N.R., Elastin stabilization in cardiovascular implants: Improved resistance to enzymatic degradation by treatment with tannic acid, Biomaterials, 2004, 25 (16), 3293–3302, DOI: 10.1016/j.biomaterials.2003.10.001.
  17. Jastrzębska M., Mróz I., Barwiński B., Zalewska-Rejdak J., Turek A., Cwalina B., Supramolecular structure of human aortic valve and pericardial xenograft material: Atomic force microscopy study, J. Mater Sci.: Mater Med., 2008, 19 (1), 249–256, DOI: 10.1007/s10856-006-0049-2.
  18. Jastrzębska M., Wrzalik R., Kocot A., Zalewska-Rejdak J., Cwalina B., Hydration of glutaraldehyde-fixed pericardium tissue: Raman spectroscopic study, J. Raman Spectrosc., 2003, 34 (6), 424–431, DOI: 10.1002/jrs.1016.
  19. Jastrzębska M., Zalewska-Rejdak J., Wrzalik R., Kocot A., Mróz I., Barwiński B. et al., Tannic acid-stabilized pericardium tissue: IR spectroscopy, atomic force microscopy, and dielectric spectroscopy investigations, J. Biomed. Mater Res. A, 2006, 78A (1), 148–156, DOI: 10.1002/jbm.a.30717.
  20. Kobielarz M., Effect of collagen fibres and elastic lamellae content on the mechanical behaviour of abdominal aortic aneurysms, Acta Bioeng. Biomech., 2020, 22 (3), 9–21, DOI: 10.37190/ABB-01580-2020-02.
  21. Leikina E., Mertts M. v., Kuznetsova N., Leikin S., Type I collagen is thermally unstable at body temperature, Proc. Natl. Acad. Sci. USA, 2002, 99 (3), 1314–1318, DOI: 10.1073/pnas.032307099.
  22. Meyer M., Processing of collagen based biomaterials and the resulting materials properties, Biomed. Eng. Online, 2019, 18, 24, DOI: 10.1186/s12938-019-0647-0.
  23. Naimark W.A., Lee J.M., Limeback H., Cheung D.T., Correlation of structure and viscoelastic properties in the pericardia of four mammalian species, Am. J. Physiol. – Heart Circ. Physiol., 1992, 263 (4), H1095–H1106, DOI: 10.1152/ajpheart.1992.263.4.h1095.
  24. Ogden R.W., Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids, Proc. R. Soc. A Math. Phys. Eng. Sci., 1972, 326 (1567), 565–584, DOI: 10.1098/rspa.1972.0026.
  25. Olde Damink L.H.H., Dijkstra P.J., van Luyn M.J.A., van Wachem P.B., Nieuwenhuis P., Feijen J., Glutaraldehyde as a cross-linking agent for collagen-based biomaterials, J. Mater. Sci. Mater Med., 1995, 6 (8), 460–472, DOI: 10.1007/BF00123371.
  26. Rosenthal J.T., Shaw B.W., Hardesty R.L., Principles of multiple organ procurement from cadaver donors, Ann. Surg., 1983, 198 (5), 617–621, DOI: 10.1097/00000658-198311000-00010.
  27. Schoen F.J., Levy R.J., Calcification of tissue heart valve substitutes: Progress toward understanding and prevention, Ann. Thorac. Surg., 2005, 79 (3), 1072–1080, DOI: 10.1016/j.athoracsur.2004.06.033.
  28. Shabetai R., The pericardium, Kluwer Academic Publishers, 2003.
  29. Shah S.R., Vyavahare N.R., The effect of glycosaminoglycan stabilization on tissue buckling in bioprosthetic heart valves, Biomaterials, 2008, 29 (11), 1645–1653, DOI: 10.1016/j.biomaterials.2007.12.009.
  30. Simionescu D., Simionescu A., Deac R., Mapping of glutaraldehyde- treated bovine pericardium and tissue selection for bioprosthetic heart valves, J. Biomed. Mater. Res., 1993, 27 (6), 697–704, DOI: 10.1002/jbm.820270602.
  31. Singhal P., Luk A., Butany J., Bioprosthetic Heart Valves: Impact of implantation on biomaterials, Int. Sch. Res. Not., 2013, 2013. 728791, DOI: 10.5402/2013/728791.
  32. Sionkowska A., Kaczmarek B., Lewandowska K., Modification of collagen and chitosan mixtures by the addition of tannic acid, J. Mol. Liq., 2014, 199, 318–323, DOI: 10.1016/j.molliq.2014.09.028.
  33. Turek A., Cwalina B., Kobielarz M., Radioisotopic investigation of crosslinking density in bovine pericardium used as a biomaterial, Nukleonika, 2013, 58 (4), 511–517.
  34. Umashankar P.R., Mohanan P.V., Kumari T.V., Glutaraldehyde treatment elicits toxic response compared to decellularization in bovine pericardium, Toxicol. Int., 2012, 19 (1), 51–58, DOI: 10.4103/0971-6580.94513.
  35. Velmurugan P., Singam E.R.A., Jonnalagadda R.R., Subramanian V., Investigation on interaction of tannic acid with type i collagen and its effect on thermal, enzymatic, and conformational stability for tissue engineering applications, Biopolymers, 2014, 101 (5), 471–483, DOI: 10.1002/bip.22405.
  36. Walrafen G.E., Chu Y.C., Nature of collagen-water hydration forces: A problem in water structure, Chem. Phys., 2000, 258 (2–3), 427–446, DOI: 10.1016/S0301-0104(00)00072-0.
  37. Wang D., Jiang H., Li J., Zhou J.Y., Hu S.S., Mitigated calcification of glutaraldehyde-fixed bovine pericardium by Tannic acid in rats, Chin. Med. J., 2008, 121 (17), 1675–1679, DOI: 10.1097/00029330-200809010-00017.
  38. Zilla P., Weissenstein C., Human P., Dower T., Von Oppell U.O., High glutaraldehyde concentrations mitigate bioprosthetic root calcification in the sheep model, Ann. Thorac. Surg., 2000, 70 (6), 2091–2095, DOI: 10.1016/S0003-4975(00)02011-7.
  39. Zilla P., Zhang Y., Human P., Koen W., von Oppell U., Improved ultrastructural preservation of bioprosthetic tissue, J. Heart Valve Dis., 1997, 6 (5), 492–501.
  40. Zouhair S., Sasso E.D., Tuladhar S.R., Fidalgo C., Vedovelli L., Filippi A., A comprehensive comparison of bovine and porcine decellularized pericardia: New insights for surgical applications, Biomolecules, 2020, 10 (3), 371, DOI: 10.3390/biom10030371.
DOI: https://doi.org/10.37190/abb-02119-2022-01 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 21 - 31
Submitted on: Aug 2, 2022
|
Accepted on: Aug 24, 2022
|
Published on: Jan 25, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Karolina Zofia Dąbrowska, Artur Turek, Rafał Grzejda, Magdalena Kobielarz, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.