Have a personal or library account? Click to login
Three-dimensional finite element analysis f a novel interzygapophyseal fusion device for lower cervical spine Cover

Three-dimensional finite element analysis f a novel interzygapophyseal fusion device for lower cervical spine

Open Access
|Jul 2022

References

  1. Cheng N.S., Lau P.Y., Sun L.K., Wong N.M., Fusion rate of anterior cervical plating after corpectomy, J. Orthop. Surg. (Hong Kong), 2005, 13 (3), 223–227, DOI: 10.1177/230949900501300302.
  2. Cusick J.F., Yoganandan N., Pintar F., Myklebust J., Hussain H., Biomechanics of cervical spine facetectomy and fixation techniques, Spine (Phila, Pa, 1976), 1988, 13 (7), 808–812.
  3. Gandhi A.A., Kode S., Devries N.A., Grosland N.M., Smucker J.D., Fredericks D.C., Biomechanical Analysis of Cervical Disc Replacement and Fusion Using Single Level, Two Level, and Hybrid Constructs, Spine, 2015, 40, 1578–1585, DOI: 10.1097/brs.0000000000001044.
  4. Goel A., Shah A., Facetal distraction as treatment for singleand multilevel cervical spondylotic radiculopathy and myelopathy: a preliminary report, J. Neurosurg. Spine, 2011, 14 (6), 689–696, DOI: 10.3171/2011.2.SPINE10601.
  5. Hedenstierna S., Halldin P., How does a three-dimensional continuum muscle model affect the kinematics and muscle strains of a finite element neck model compared to a discrete muscle model in rear-end, frontal, and lateral impacts, Spine, 2008, 33, E236-245, DOI: 10.1097/BRS.0b013e31816b8812.
  6. Kanematsu R., Hanakita J., Takahashi T., Minami M., Inoue T., Honda F., Risk Factor Analysis of Facet Fusion Following Cervical Lateral Mass Screw Fixation with a Minimum 1-Year Follow-up: Assessment of Maximal Insertional Screw Torque and Incidence of Loosening, Neurol. Med. Chir. (Tokyo), 2021, 61 (1), 40–46, DOI: 10.2176/nmc.oa.2020-0206.
  7. Karadogan E., Williams R.L., Three-dimensional static modeling of the lumbar spine, Journal of Biomechanical Engineering, 2012, 134, 084504, DOI: 10.1115/1.4007172.
  8. Kato Y., Kaneko K., Kataoka H., Kojima T., Imajyo Y., Taguchi T., Cervical hemilaminoplasty: technical note, Journal of Spinal Disorders and Techniques, 2007, 20, 296–301, DOI: 10.1097/01.bsd.0000211287.98895.a3.
  9. Khuyagbaatar B., Kim K., Park W.M., Kim Y.H., Influence of sagittal and axial types of ossification of posterior longitudinal ligament on mechanical stress in cervical spinal cord: A finite element analysis, Clin. Biomech. (Bristol, Avon), 2015, 30, 1133–1139.
  10. Kurokawa R., Kim P., Cervical Laminoplasty: The History and the Future, Neurologia Medico-Chirurgica, 2015, 55, 529–539, DOI: 10.2176/nmc.ra.2014-0387.
  11. McCormack B.M., Dhawan R., Novel instrumentation and technique for tissue sparing posterior cervical fusion, J. Clin. Neurosci., 2016, 34, 299–302, DOI: 10.1016/j.jocn.2016.08.008.
  12. Ng H.W., Teo E.C., Nonlinear finite-element analysis of the lower cervical spine (C4–C6) under axial loading, Journal of Spinal Disorders, 2001, 14, 201–210, DOI: 10.1097/00002517-200106000-00003.
  13. Panjabi M.M., White A.A. 3rd, Johnson R.M., Cervical spine mechanics as a function of transection of components, J. Biomech., 1975, 8 (5), 327–336.
  14. Raynor R.B., Pugh J., Shapiro I., Cervical facetectomy and its effect on spine strength, J. Neurosurg., 1985, 63 (2), 278–282.
  15. Tanaka N., Fujimoto Y., An H.S., Ikuta Y., Yasuda M., The anatomic relation among the nerve roots, intervertebral foramina, and intervertebral discs of the cervical spine, Spine, 2000, 25, 286–291, DOI: 10.1097/00007632-200002010-00005.
  16. Taso M., Fradet L., Callot V., Arnoux P.J., Anteroposterior compression of the spinal cord leading to cervical myelopathy: a finite element analysis, Comput. Methods Biomech. Biomed. Engin., 2015, 18 (Suppl 1), 2070–2071.
  17. Voo L.M., Kumaresan S., Yoganandan N., Pintar F.A., Cusick J.F., Finite element analysis of cervical facetectomy, Spine, 1997, 22 (9), 964–969.
  18. Voronov L.I., Siemionow K.B., Havey R.M., Carandang G., Phillips F.M., Patwardhan A.G., Bilateral posterior cervical cages provide biomechanical stability: assessment of stand-alone and supplemental fixation for anterior cervical discectomy and fusion, Med. Devices (Auckl.), 2016, 9, 223–230, DOI: 10.2147/MDER.S109588, eCollection 2016.
  19. Wu T.K., Meng Y., Liu H., Wang B.Y., Hong Y., Rong X., Ding C., Chen H., Biomechanical effects on the intermediate segment of noncontiguous hybrid surgery with cervical disc arthroplasty and anterior cervical discectomy and fusion: a finite element analysis, The Spine Journal: official journal of the North American Spine Society, 2019, 19, 1254–1263, DOI: 10.1016/j.spinee. 2019.02.004.
  20. Zdeblick T.A., Zou D., Warden K.E., McCabe R., Kunz D., VanDerby R., Cervical stability after foraminotomy. A biomechanical in vitro analysis, J. Bone Joint Surg. Am., 1992, 74 (1), 22–27.
DOI: https://doi.org/10.37190/abb-02067-2022-03 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 187 - 193
Submitted on: Apr 8, 2022
Accepted on: Jul 18, 2022
Published on: Jul 22, 2022
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Qi Wang, Hong Yuan, Mingming Guo, Lingzhi Meng, Zuoyao Long, Yu Long, Huifeng Yang, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.