Have a personal or library account? Click to login
Mechanical properties of the mouse femur after treatment with diclofenac and running exercises Cover

Mechanical properties of the mouse femur after treatment with diclofenac and running exercises

Open Access
|Jul 2022

References

  1. Bissinger O., Kreutzer K., Gotz C., Hapfelmeier A., Pautke Ch., Vogt S., Wexel G., Wolff K.-D., Tischer T., Prodinger P.M., A biomechanical, micro-computertomographic and histological analysis of the influence of diclofenac and prednisolone on fracture healing in vivo, BMC Musc. Dis., 2016, 17, DOI: 10.1186/s12891-016-1241-2.
  2. Bochud N., Vallet Q., Minonzio J.-G., Laugier P., Predicting bone strength with ultrasonic guided waves, Sci. Rep., 2017, 7, DOI: 10.1038/srep43628.
  3. Bowman S.M., Gibson L.J., Hayes, W.C., McMahon T.A., Results from demineralized bone creep tests suggest that collagen is responsible for the creep behavior of bone, J. Biomech. Eng., 1999, 121, DOI: 10.1115/1.2835112.
  4. Burstein A.H., Zika J.M., Heiple K.G., Klein L., Contribution of collagen and mineral to the elastic-plastic properties of bone, JBJS, 1975, 57, 956–961.
  5. Capanema N.S.V., Mansur A.A.P., Carvalho S.M., Silva A.R.P., Ciminelli V.S., Mansur H.S., Niobium-Doped Hydroxyapatite Bioceramics: Synthesis, Characterization and In Vitro Cytocompatibility, Materials, 2015, 8, DOI: 10.3390/ma8074191.
  6. Cottrell J., O’Connor J.P., Effect of Non-Steroidal Anti-Inflammatory Drugs on Bone Healing, Pharmac., 2010, 3, DOI: 10.3390/ph3051668.
  7. Currey J.D., The design of mineralized hard tissues for their mechanical functions, J. Exp. Biol., 1999, 202, DOI: 10.1242/jeb.202.23.3285.
  8. Currey J.D., What determines the bending strength of compact bone?, J. Exp. Biol., 1999, 202, DOI: 10.1242/jeb.202.18.2495.
  9. Dobrzyńnski M., Pezowicz C., Tomanik M., Kuropka P., Dudek K., Fita K., Styczyńska M., Wiglusz R.J., Modulating effect of selected pharmaceuticals on bone in female rats exposed to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), RSC Advances, 2018, 8 (48), DOI: 10.1039/C8RA03619E.
  10. Donnelly E., Williams R.M., Downs S.A., Dickinson M.E., Quasistatic and dynamic nanomechanical properties of cancellous bone tissue relate to collagen content and organization, J. Mater. Res., 2006, 21, DOI: 10.1557/jmr.2006.0259.
  11. Drouet Ch., Aufray M., Rollin-Martinet S., Vandecandelaere N., Grossin D., Rossignol F., Champion E., Navrotsky A., Rey Ch., Nanocrystalline apatites: The fundamental role of water, Am. Min., 2018, 103, DOI: 10.2138/am-2018-6415.
  12. Ellingham S.T.D., Thompson T.J.U., Islam M., Thermogravimetric analysis of property changes and weight loss in incinerated bone, Pal. Pal. Pal., 2015, 438, DOI: 10.1016/j.paleo.2015.08.009.
  13. Förstera Y., Schulze S., Penk A., Neuber Ch., Moler S., Hintze V., Scharnweber D., Schnabelrauch M., Pietzsch J., Huster D., Rammelt S., The influence of different artificial extracellular matrix implant coatings on the regeneration of a critical size femur defect in rats, Mater. Sci. Eng. C., 2020, 116, DOI: 10.1016/j.msec.2020.111157.
  14. Gardinier J.D., Rostami N., Lauren J., Zhang C., Bone adaptation in response to treadmill exercise in young and adult mice, Bone Rep., 2018, 8, DOI: 10.1016/j.bonr.2018.01.003.
  15. Garner E., Lakes R., Lee T., Swan, C., Brand R., Viscoelastic dissipation in compact bone: Implications for stress-induced fluid flow in bone, J. Biom. Eng., 2000, 122, DOI: 10.1115/1.429638.
  16. Gauza-Włodarczyk M., Kubisz L., Mielcarek S., Włodarczyk D., Comparison of the thermal properties of fish collagen and bovine collagen in the temperature range 298–670 K, Mater. Sci. Eng. C., 2017, 80, DOI: 10.1016/j.msec.2017.06.012.
  17. Górecka Ż., Idaszek J., Kołbuk D., Choińska E., Chlanda A., Święszkowski W., The effect of diameter of fibre on formation of hydrogen bonds and mechanical properties of 3Dprinted PCL, Mater. Sci. Eng. C., 2020, 114, DOI: 10.1016/j.msec.2020.111072.
  18. Hoehne G., Hemminger W., Flammersheim H.-J., Differential Scanning Calorimetry, Springer-Verlag, Berlin, 1996
  19. Iwamoto J., Shimamura Ch., Takeda T., Abe H., Ichimura S., Sato Y., Toyama Y., Effects of treadmill exercise on bone mass, bone metabolism and calciotropic hormones in young growing rats, JBMM, 2004, 22, DOI: 10.1007/s00774-003-0443-5.
  20. Jamsa T., Jalovaara P., Peng Z., Vaananen H.K., Tuukkanen J., Comparison of three-point bending test and peripheral quantitative computed tomography analysis in the evaluation of the strength of mouse femur and tibia, Bone, 1998, 23, DOI: 10.1016/s8756-3282(98)00076-3.
  21. Jepsen K.J., Silva M.J., Vashishth D., Guo X.E., van der Meulen M.Ch., Establishing Biomechanical Mechanisms in Mouse Model: Practical Guidelines for Systematically Evaluating Phenotypic Changes in the Diaphyses of Long Bones, JBMR, 2015, 30, DOI: 10.1002/jbmr.2539.
  22. Kodama Y., Umemura Y., Nagasawa S., Beamer W.G., Donahue L.R., Rosen C.R., Baylink D.J., Farley J.R., Exercise and mechanical loading increase periosteal bone formation and whole bone strength in C57BL/6J mice but not in C3H/Hej mice, Cal. Tiss. Inter., 2000, 66, DOI: 10.1007/s002230010060.
  23. Landis W.J., The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix, Bone, 1995, 16, DOI: 10.1016/8756-3282(95)00076-p.
  24. Lefevre E., Farlay D., Barla Y., Subtil F., Wolfram U., Rizzo S., Baron C., Zysset P., Pithioux M., Follet H., Compositional and mechanical properties of growing cortical bone tissue: a study of the human fibula, Sci. Rep., 2019, 9, DOI: 10.1038/s41598-019-54016-1.
  25. Lefevre E., Baron C., Gineyts E., Bala Y., Gharbi H., Allain J-M., Lasaygues P., Pithioux M., Follet H., Ultrasounds could be considered as a future tool for probing growing bone properties, Sci. Rep., 2020, 10, DOI: 10.1038/s41598-020-72776-z.
  26. Lehmann T.P., Wojtków M., Pruszyńska-Oszmałak E., Kołodziejski P., Pezowicz C., Trzaskowska A., Mielcarek S., Szybowicz M., Nowicka A.B., Nowicki M., Misterska E., Iwańczyk-Skalska E., Jagodziński P., Głowacki M., Trabecular bone remodelling in the femur of C57BL/6J mice treated with diclofenac in combination with treadmill exercise, Acta Bioeng. Biomech., 2021, 3, DOI: 10.37190/ABB-01851-2021-01.
  27. Lisowska B., Kosson D., Domaracka K., Positives and negatives of nonsteroidal anti-inflammatory drugs in bone healing: the effects of these drugs on bone repair, Drug Design, Development and Therapy, 2018, 12, DOI: 10.2147/DDDT.S164565.
  28. Mardas M., Kubisz L., Biskupski P., Mielcarek S., Stelmach-Mardas M., Kałuska I., Radiation sterilized bone response to dynamic loading, Mat. Sci. Eng. C., 2012, 32, DOI: 10.1016/j.msec.2012.04.041.
  29. Menard K.P., Dynamic Mechanical Analysis: A Practical Introduction, CRC Press, 1999.
  30. Moilanen P., Nicholson P.H.F., Kilappa V., Cheng S., Timonen J., Assessment of the cortical bone thickness using ultrasonic guided waves: Modelling and in vitro study, Ultr. Med. Biol., 2007, 33, DOI: 10.1016/j.ultrasmedbio.2006.07.038.
  31. Pountos I., Georgouli T., Calori G.M., Giannoudis P.V., Do nonsteroidal anti-inflammatory drugs affect bone healing? A critical analysis, Sci. World J., 2012, 2012, DOI: 10.1100/2012/606404.
  32. Ramirez-Garcia-Luna J., Wong T.H., Chan D., Al-Saran Y., Awlia A., Abou-Rjeili M., Ouellet S., Akoury E., Lemerie C.A., Henderson J.E., Martineau P.A., Deffective bone repair in diclofenac treated C57B16 mice with and without lipopolysaccharide induced systemic inflammation, J. Cell. Physiol., 2018, 1–10, DOI: 10.1002/jcp.27128.
  33. Schriefer J.L., Robling A.G., Warden S.J., Fournier A.J., Mason J.J., Turner C.H., A comparison of mechanical properties derived from multiple skeletal sites in mice, J. Biomech., 2005, 38, DOI: 10.1016/j.jbiomech.2004.04.020.
  34. Shimamura C.H., Iwamoto J., Takeda T., Ichimura S., Abe H., Toyame Y., Effect of decreased physical activity on bone mass in exercise-trained young rats, J. Orth. Sci., 2002, 7, DOI: 10.1007/s007760200060.
  35. Torcasio A., van Oosterwyck, H., van Lenthe G.H., The systematic errors in tissue modulus of murine bones when estimated from three-point bending, J. Biomech., 2008, 41, DOI: 10.1016/S0021-9290(08)70014-9.
  36. Trębacz H., Wojtowicz K., Thermal stabilization of collagen molecules in bone tissue, Int. J. Biol. Macrom., 2005, 37, DOI: 10.1016/j.ijbiomac.2005.04.007.
  37. Turner C.H., Burr D.B., Basic biomechanical measurements of bone: a tutorial, Bone, 1993, 14, DOI: 10.1016/8756-3282(93)90081-k.
  38. Wallace J.M., Rajachar R.M., Allen M.R., Bloomfield S.A., Robey P.G., Young M.F., Kohn D.H., Exercise-induced changes in the cortical bone of growing mice are bone- and gender-specific, Bone, 2007, 40, DOI: 10.1016/j.bone.2006.12.002.
  39. Von Euw S., Wang Y., Laurent G., Drouet Ch., Babonneau F., Nassif N., Azais T., Bone mineral: new insights into its chemical composition, Sci. Rep., 2019, 9, DOI: 10.1038/s41598-019-44620-6.
  40. Yamashita J., Li, X., Furman B.R., Rawls H.R., Wang X., Agrawal C.M., Collagen and bone viscoelasticity: a dynamic mechanical analysis, J. Biomed. Mat. Res., 2002, 63, DOI: 10.1002/jbm.10086.
DOI: https://doi.org/10.37190/abb-02061-2022-03 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 129 - 139
Submitted on: Mar 31, 2022
Accepted on: May 26, 2022
Published on: Jul 22, 2022
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Aleksandra Trzaskowska, Sławomir Mielcarek, Tomasz Lehmann, Ewa Pruszyńska-Oszmałek, Paweł Kołodziejski, Maciej Głowacki, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.