Have a personal or library account? Click to login
Comparative analyses of blood flow through mechanical trileaflet and bileaflet aortic valves Cover

Comparative analyses of blood flow through mechanical trileaflet and bileaflet aortic valves

Open Access
|Jul 2022

References

  1. Abbas S.S., Nasif M.S., Al-Waked R., Said M.A.M., Numerical investigation on the effect of bileaflet mechanical heart valve’s implantation tilting angle and aortic root geometry on intermittent regurgitation and platelet activation, Artif. Organs, 2020, 44 (2), E20–E39.
  2. Ali A., Kazmi R., High performance simulation of blood flow pattern and transportation of magnetic nanoparticles in capillaries, Intell. Technol. Appl., 2020, 1198, 222–236.
  3. Amindari A., Kirkköprü K., Saltik İL., Sünbüloğlu E., Effect of non-linear leaflet material properties on aortic valve dynamics – A coupled fluid-structure approach, Eng. Solid. Mech., 2021, 9 (2), 123–136.
  4. Amindari A., Saltik L., Kirkkopru K., Yacoub M., Yalcin H.C., Assessment of calcified aortic valve leaflet deformations and blood flow dynamics using fluid-structure interaction modeling, Inform. Med. Unlocked, 2017, 9, 191–199.
  5. Bailoor S., Seo J.-H., Dasi L., Schena S., Mittal R., A computational study of the hemodynamics of bioprosthetic aortic valves with reduced leaflet motion, J. Biomech., 2021, 120 (21), 110350.
  6. Belkhiri K., Boumeddane B., A Cartesian grid generation technique for 2-D non-Newtonian blood flow through a bileaflet mechanical heart valve, Int. J. Comput. Methods Eng., 2021, 22 (4), 297–315.
  7. Bruecker C., Li Q., Possible early generation of physiological helical flow could benefit the triflo trileaflet heart valve prosthesis compared to bileaflet valves, Bioeng., 2020, 7 (4), 1–16.
  8. Carrel T., Dembitsky W.P., de Mol B., Obrist D., Dreyfus G., Meuris B., Vennemann B., Lapeyre D., Schaff H., Non-physiologic closing of bi-leaflet mechanical heart prostheses requires a new tri-leaflet valve design, Int. J. Cardiol., 2020, 304, 125–127.
  9. Claiborne T.E., Xenos M., Sheriff J., Chiu W-C., Soares J., Alemu Y., Gupta S., Judex S., Slepian M.J., Bluestein D., Towards optimization of a novel trileaflet polymeric prosthetic heart valve via device thrombogenicity emulation (DTE), ASAIO, 2013, 59 (3), 275–283.
  10. Dijkman P.E., Fioretta E.S., Frese L., Pasqualini F.S., Hoerstrup S.P., Heart valve replacements with regenerative capacity, Transfus. Med. Hemoth., 2016, 43 (4), 282–290.
  11. Fries R., Graeter T., Aicher D., Reul H., Schmitz C., Böhm M., Schäfers H.J., In vitro comparison of aortic valve movement after valve-preserving aortic replacement, J. Thorac. Cardiovasc. Surg., 2006, 132 (1), 32–37.
  12. Ge L., Dasi L.P., Sotiropoulos F., Yoganathan A.P., Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. Viscous Stresses, Ann. Biomed. Eng., 2008, 36 (2), 276–297.
  13. Gilmanov A., Sotiropoulos F., Comparative hemodynamics in an aorta with bicuspid and trileaflet valves, Theor. Comput. Fluid Dyn., 2016, 30, 67–85.
  14. Hanafizadeh P., Mirkhani N., Davoudi M.R., Masouminia M., Sadeghy K., Non-Newtonian blood flow simulation of diastolic phase in bileaflet mechanical heart valve implanted in a realistic aortic root containing coronary arteries, Artif. Organs, 2016, 40 (10), E179–E191.
  15. Hui S., Mahmood F., Matyal R., Aortic valve area-technical communication: continuity and Gorlin equations revisited, J. Cardiothorac. Vasc. Anesth., 2018, 32 (6), 2599–2606.
  16. Kim W., Choi H., Kweon J., Yang D.H., Kim Y.-H., Effects of pannus formation on the flow around a bileaflet mechanical heart valve, PLoS ONE, 2020, 15 (6), e0234341.
  17. Kuan Y.H., Kabinejadian F., Nguyen V.-T., Su B., Yoganathan A.P., Leo H.L., Comparison of hinge microflow fields of bileaflet mechanical heart valves implanted in different sinus shape and downstream geometry, Comput. Methods in Biomech. Biomed. Engin., 2015, 18 (16), 1785–1796.
  18. Kuan Y.H., Nguyen V.-T., Kabinejadian F., Leo H.L., Computational hemodynamic investigation of bileaflet and trileaflet mechanical heart valves, J. Heart Valve Dis., 2015, 24 (3), 393–403.
  19. Kwon Y.J., Numerical analysis for the structural strength comparison of St. Jude Medical and Edwards MIRA bileaflet mechanical heart valve prostheses, J. Mech. Sci. Technol., 2010, 24 (2), 461–469.
  20. Li C.-P., Chen S.-F., Lo C.-W., Lu P.-C., Turbulence characteristics downstream of a new trileaflet mechanical heart valve, Biomed. Eng., 2011, 57 (3), 188–196.
  21. [21] Mao W., Caballero A., McKay R., Primiano C., Sun W., Fully-coupled fluid-structure interaction simulation of the aortic and mitral valves in a realistic 3D left ventricle model, PLoS ONE, 2017, 12 (9), e0184729.
  22. Mazzitelli R., Boyle F., Murphy E., Renzulli A., Fragomeni G., Numerical prediction of the effect of aortic Left Ventricular Assist Device outflow-graft anastomosis location, Biocybern. Biomed. Eng., 2016, 36 (2), 327–343.
  23. Nasif M.S., Kadhim S.K., Al-Kayiem H.H., Al-Waked R., Using one way fluid structure interaction coupling to investigate the effect of blood flow on the bileaflet mechanical heart valve structure, ARPN J. Eng. Appl. Sci., 2016, 11 (20), 11971–11974.
  24. Piatti F., Sturla F., Marom G., Sheriff J., Claiborne T.E., Slepian M.J., Redaelli A., Bluestein D., Hemodynamic and thrombogenic analysis of a trileaflet polymeric valve using a fluid–structure interaction approach, J. Biomech., 2015, 48 (13), 3641–3649.
  25. Qian J.-Y., Gao Z.-X., Li W.-Q., Jin Z.-J., Cavitation suppression of bileaflet mechanical heart valves, Cardiovasc. Eng. Technol., 2020, 11, 783–794.
  26. Sampaio Rodrigues L.T., Silva L.C., Machado L.C., Greco M., Gelape C.L., Simulations of artificial biological heart valves with ANSYS, Esss Comput. Model. Chall., 2016, 10.13140/RG.2.1.3146.7925.
  27. Sari M., Bayram Z., Ayturk M., Bayam E., Kalkan S., Guner A., Kalcik M., Gursoy M.O., Gunduz S., Ozkan M., Characteristic localization patterns of thrombus on various brands of bileaflet mitral mechanical heart valves as assessed by three-dimensional transesophageal echocardiography and their relationship with thromboembolism, Int. J. Card. Imaging, 2021, 37 (9), 2691–2705.
  28. Schaller T., Scharfschwerdt M., Schubert K., Prinz C., Lembke U., Sievers H.-H., Aortic valve replacement in sheep with a novel trileaflet mechanical heart valve prosthesis without anticoagulation, J. Thorac. Cardiovasc. Surg., 2021, 7, 76-88.
  29. Shibeshi S.S., Vollins W.E., The rheology of blood flow in a branched arterial system, Appl. Rheol., 2005, 15 (6), 398–405.
  30. Sievers H.H., Schubert K., Jamali A., Scharfschwerdt M., The influence of different inflow configurations on computational fluid dynamics in a novel three-leaflet mechanical heart valve prosthesis, Interact. Cardiovasc. Thorac. Surg., 2018, 27 (4), 475–480.
  31. Smadi O., Hassan I., Pibarot P., Kadem L., Numerical and experimental investigations of pulsatile blood flow pattern through a dysfunctional mechanical heart valve, J. Biomech., 2010, 43 (8), 1565–1572.
  32. Sundström E., Jonnagiri R., Gutmark-Little I., Gutmark E., Critser P., Taylor M.D., Tretter J.T., Hemodynamics and tissue biomechanics of the thoracic aorta with a trileaflet aortic valve at different phases of valve opening, Int. J. Numer. Method. Biomed. Eng., 2020, 36 (7), 1–14.
  33. Tyfa Z., Obidowski D., Reorowicz P., Stefańczyk L., Fortuniak J., Jóźwik K., Numerical simulations of the pulsatile blood flow in the different types of arterial fenestrations: Comparable analysis of multiple vascular geometries, Biocybern. Biomed. Eng., 2018, 38 (2), 228–242.
  34. Xu X., Liu T., Li C., Zhu L., Li S., A numerical analysis of pressure pulsation characteristics induced by unsteady blood flow in a bileaflet mechanical heart valve, Processes, 2019, 7 (4), 232.
  35. Yun B.M., Wu J., Simon H.A., Arjunon S., Sotiropoulos F., Aidun C.K., Yoganathan A.P., A numerical investigation of blood damage in the hinge area of aortic bileaflet mechanical heart valves during the leakage phase, Ann. Biomed. Eng., 2012, 40 (7), 1468–1485.
DOI: https://doi.org/10.37190/abb-02055-2022-02 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 141 - 152
Submitted on: Mar 15, 2022
Accepted on: May 26, 2022
Published on: Jul 22, 2022
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Marek Pawlikowski, nna Nieroda, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.