Have a personal or library account? Click to login
Comparison of the optoelectronic BTS Smart system and IMU-based MyoMotion system for the assessment of gait variables Cover

Comparison of the optoelectronic BTS Smart system and IMU-based MyoMotion system for the assessment of gait variables

Open Access
|Apr 2022

References

  1. Balasubramanian S., Abbas J., Comparison of angle measurements between Vicon and MyoMotion systems, Master’s Thesis, Center for Adaptive Neural Systems (ANS), Arizona State University, 2013.
  2. Cai L., Ma Y., Xiong S., Zhang Y., Validity and reliability of upper limb functional assessment using the microsoft kinect V2 sensor, Appl. Bionics Biomech., 2019, 14 (1), 7175240.
  3. Camomilla V., Bergamini E., Fantozzi S., Vannozzi G., Trends supporting the in-field use of wearable inertial sensors for sport performance evaluation: asystematic review, Sensors (Basel), 2018, 18 (3), E873.
  4. Corazza S., Mündermann L., Gambaretto E., Ferrigno G., Andriacchi T.P., Markerless motion capture through visual hull, articulated icp and subject specific model generation, Int. J. Comput. Vis., 2010, 87 (1–2), 156.
  5. Davis R.B., Õunpuu S., Tyburski D., Gage J.R., A gait analysis data collection and reduction technique, Hum. Mov. Sci., 1991, 10 (5), 575–587.
  6. Figard-Fabre H., Fabre N., Leonardi A., Schena F., Physiological and perceptual responses to Nordic walking in obese middle-aged women in comparison with the normal walk, Eur. J. Appl. Physiol., 2010, 108 (6), 1141–1151.
  7. Fritschi J.O., Brown W.J., van Uffelen J.G.Z., On your feet: protocol for a randomized controlled trial to compare the effects of pole walking and regular walking on physical and psychosocial health in older adults, BMC Public Health, 2014, 14 (1), 375.
  8. Fusca M., Negrini F., Perego P., Magoni L., Molteni F., Andreoni G., Validation of a wearable IMU system for gait analysis: protocol and application to a new system, Appl. Sci., 2018, 8 (7), 1167.
  9. Gribble P., Hertel J., Denegar C., Buckley W.E., Reliability and validity of a 2-D video digitizing system during a static and a dynamic task, J. Sport Rehabil., 2005, 14 (2), 137–149.
  10. Hopkins W.G., Measures of reliability in sports medicine and science, Sports Med., 2000, 30 (1), 1–15.
  11. Hopkins W.G., Spreadsheets for analysis of validity and reliability, Sportscience, 2017, 19, 36–44.
  12. Hsu W.C., Sugiarto T., Lin Y.J., Yang F.C., Lin Z.Y., Sun C.T., Hsu C.L., Chou K.N., Multiple-wearable-sensorbased gait classification and analysis in patients with neurological disorders, Sensors (Basel), 2018, 18 (10), 3397.
  13. Huber M.E., Seitz A.L., Leeser M., Sternad D., Validity and reliability of Kinect skeleton for measuring shoulder joint angles: a feasibility study, Physiotherapy, 2015, 101 (4), 389–393.
  14. Maletsky L.P., Sun J., Morton N.A., Accuracy of an optical active-marker system to track the relative motion of rigid bodies, J. Biomech., 2007, 40 (3), 682–685.
  15. Mundt M., Wisser A., David S., Dupré T., Quack V., Bamer F., Tingart M., Potthast W., Markert B., The influence of motion tasks on the accuracy of kinematic motion patterns of an imu-based measurement system, ISBS Proc. Arch., 2017, 35 (1), 245.
  16. Palmieri B., Vadalà M., Laurino C., The FIT therapy for the treatment of musculoskeletal and neurological disorders related symptoms: a retrospective observational study, Asian J. Med. Sci., 2019, 10 (5), 6–12.
  17. Pellegrini B., Boccia G., Zoppirolli C., Rosa R., Stella F., Bortolan L., Rainoldi A., Schena F., Muscular and metabolic responses to different Nordic walking techniques, when style matters, PLoS One, 2018, 13 (4), e0195438.
  18. Pietraszewski B., Woźniewski M., Jasiński R., Struzik A., Szuba A., Changes in gait variables in patients with intermittent claudication, BioMed. Res. Int., 2019, 7276865.
  19. Pueo B., Jimenez-Olmedo J.M., Lipinska P., Busko K., Penichet-Tomas A., Concurrent validity and reliability of proprietary and open-source jump mat systems for the assessment of vertical jumps in sport sciences, Acta Bioeng. Biomech., 2018, 20 (4), 51–57.
  20. Qiu S., Liu L., Zhao H., Wang Z., Jiang Y., MEMS inertial sensors based gait analysis for rehabilitation assessment via multi-sensor fusion, Micromachines (Basel), 2018, 9 (9), 442.
  21. Reuter I., Mehnert S., Leone P., Kaps M., Oechsner M., Engelhardt M., Effects of a flexibility and relaxation programme, walking, and nordic walking on Parkinson’s disease, J. Aging. Res., 2011, 232473.
  22. Richards J.G., The measurement of human motion: a comparison of commercially available systems, Hum. Mov. Sci., 1999, 18 (5), 589–602.
  23. Roell M., Mahler H., Lienhard J., Gehring D., Gollhofer A., Roecker K., Validation of wearable sensors during team sport-specific movements in indoor environments, Sensors (Basel), 2019, 19 (16), 3458.
  24. Seel T., Raisch J., Schauer T., IMU-based joint angle measurement for gait analysis, Sensors (Basel), 2014, 14 (4), 6891–6909.
  25. Slomka K.J., Sobota G., Skowronek T., Rzepko M., Czarny W., Juras G., Evaluation of reliability and concurrent validity of two optoelectric systems used for recording maximum vertical jumping performance versus the gold standard, Acta Bioeng. Biomech., 2017, 19 (2), 141–147.
  26. Smith T.B., Hopkins W.G., Variability and predictability of finals times of elite rowers, Med. Sci. Sports Exerc., 2011, 43 (11), 2155–2160.
  27. Stancic I., Supuk T.G., Panjkota A., Design, development and evaluation of optical motion-tracking system based on active white light markers, IET Sci. Meas. Technol., 2013, 7 (4), 206–214.
  28. Struzik A., Konieczny G., Grzesik K., Stawarz M., Winiarski S., Rokita A., Relationship between lower limbs kinematic variables and effectiveness of sprint during maximum velocity phase, Acta Bioeng. Biomech., 2015, 17 (4), 131–138.
  29. Struzik A., Konieczny G., Stawarz M., Grzesik K., Winiarski S., Rokita A., Relationship between lower limb angular kinematic variables and the effectiveness of sprinting during the acceleration phase, Appl. Bionics Biomech., 2016, 7480709.
  30. Tao W., Liu T., Zheng R., Feng H., Gait analysis using wearable sensors, Sensors (Basel), 2012, 12 (2), 2255–2283.
  31. Willson J., Torry M.R., Decker M.J., Kernozek T., Steadman J.R., Effects of walking poles on lower extremity gait mechanics, Med. Sci. Sports Exerc., 2001, 33 (1), 142–147.
  32. Windolf M., Gotzen N., Morlock M., Systematic accuracy and precision analysis of video motion capturing systems – exemplified on the Vicon-460 system, J. Biomech., 2008, 41 (12), 2776–2780.
  33. Xu J., Bao T., Lee U.H., Kinnaird C., Carender W., Huang Y., Sienko K.H., Shull P.B., Configurable, wearable sensing and vibrotactile feedback system for real-time postural balance and gait training: proof-of-concept, J. NeuroEng. Rehabil., 2017, 14 (1), 102.
  34. Yoon T.L., Validity and reliability of an inertial measurement unit-based 3D angular measurement of shoulder joint motion, J. Korean Phys. Ther., 2017, 29 (3), 145–151.
  35. Zawadzki J., Bober T., Siemienski A., Validity analysis of the biodex system 3 dynamometer under static and isokinetic conditions, Acta Bioeng. Biomech., 2010, 12 (4), 25–32.
DOI: https://doi.org/10.37190/abb-01992-2021-02 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 103 - 116
Submitted on: Nov 24, 2021
Accepted on: Feb 10, 2022
Published on: Apr 1, 2022
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Amadeusz Bartoszek, Artur Struzik, Sebastian Jaroszczuk, Marek Woźniewski, Bogdan Pietraszewski, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.