Have a personal or library account? Click to login
Biobased poly(3-hydroxybutyrate acid) composites with addition of aliphatic polyurethane based on polypropylene glycols Cover

Biobased poly(3-hydroxybutyrate acid) composites with addition of aliphatic polyurethane based on polypropylene glycols

Open Access
|Apr 2022

Abstract

Poly(3-hydroxybutyrate) (P3HB) is the most important of the polyhydroxyalkanoates. It is biosynthesized, biodegradable, biocompatible, and shows no cytotoxicity and mutagenicity. P3HB is a natural metabolite in the human body and, therefore, it could replace the synthetic, hard-to-degrade polymers used in the production of implants. However, P3HB is a brittle material with limited thermal stability. Therefore, in order to improve its mechanical properties and processing parameters by separating its melting point and degradation temperature, P3HB-based composites can be produced using, for example, linear aliphatic polyurethanes as modifiers. The aim of the study is a modification of P3HB properties with the use of linear aliphatic polyurethanes synthesized in reaction of hexamethylene diisocyanate (HDI) and polypropylene glycols (PPG) by producing their composites.

Prepared biocomposites were tested by the scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetry (TGA). Furthermore, selected mechanical properties were evaluated. It has been confirmed that new biocomposites showed an increase in impact strength, relative strain at break, decrease of hardness and higher degradation temperature compared to the unfilled P3HB. The biocomposites also showed a decrease in the glass transition temperature and the degree of crystallinity. Biocomposites obtained with 10 wt. % polyurethane synthesized with polypropylene glycol having 1000 g · mole–1 and HDI have the best thermal and mechanical properties.

DOI: https://doi.org/10.37190/abb-01987-2021-02 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 75 - 89
Submitted on: Nov 19, 2021
Accepted on: Jan 14, 2022
Published on: Apr 1, 2022
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Iwona Zarzyka, Anna Czerniecka-Kubicka, Karol Hęclik, Lucjan Dobrowolski, Beata Krzykowska, Anita Białkowska, Mohamed Bakar, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.