Have a personal or library account? Click to login
Influence of the intramedullary nail locking method on the stiffness of the bone-implant system Cover

Influence of the intramedullary nail locking method on the stiffness of the bone-implant system

Open Access
|Apr 2022

References

  1. Alierta J.A., Pérez M.A., Seral B., García-Aznar J.M., Biomechanical assessment and clinical analysis of different intramedullary nailing systems for oblique fractures, Comput. Methods Biomech. Biomed. Engin., 2016, 19 (12), 1266–1277.
  2. Berger L., Fischerauer S., Weiß B., Celarek A., Castellani C., Weinberg A.M., Tschegg E., Unlocked and locked elastic stable intramedullary nailing in an ovine tibia fracture model: a biomechanical study, Mater Sci. Eng. C, 2014, 40, 267–274.
  3. Bińczyk F., Śmieszny G., Relation between the mechanical dissipation and abrasive wear of the casting alloys, Archiwum Odlewnictwa (in Polish), 2006, 6 (18/2), 537–544.
  4. Bortholin R.C., Garcia D.O., Finocchio H., Dias L.G.G.G., Razzino C.A., Carvalho J., Study of mechanical properties of fractured bone implant with interlocking intramedullary nail polyamide, COBEM 2013, 4867–4878.
  5. Claes L., Improvement of clinical fracture healing – What can be learned from mechano-biological research?, J. Biomech, 2021, 115, 110148, https://doi.org/10.1016/j.jbiomech.2020.110148.
  6. Claes L., Recknagel S., Ignatius A., Fracture healing under healthy and inflammatory conditions, Nat. Rev. Rheumatol., 2012, 8 (3), 133–143.
  7. Damrongdej P., Comparison between new design interlocking nail with plate fixation and intramedullary pin with external skeletal fixation in long bone fracture in the dogs, Ukr. J. Vet. Agric. Sci., 2019, 2 (2), 22–26.
  8. Fu R., Feng Y., Liu Y., Willie B.M., Yang H., The combined effects of dynamization time and degree on bone healing, J. Orthop. Res., 2021, 1–10, DOI: 10.1002/jor.25060.
  9. Gatineau M., Planté J., Ulnar Interlocking Intramedullary Nail Stabilization of a Proximal Radio_Ulnar Fracture in a Dog, Vet. Surg., 2010, 39 (8), 1025–1029.
  10. Igna C., Schuszler L., Dascalu R., Sabau M., Luca C., Interlocking Nail Stabilization of Diaphyseal Long-Bone Fractures. Initial Experiences in Six Clinical Cases, Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Vet. Med., 2011, 2 (68), 165–170.
  11. Kang S.R., Bok S.C., Choi S.C., Lee S.S., Heo M.S., Huh K.H., Yi W.J., The relationship between dental implant stability and trabecular bone structure using cone-beam computed tomography, J. Periodontal Implant Sci., 2016, 46 (2), 116–127.
  12. Kosior P., Nikodem A., Kozuń M., Dudek K., Janeczek M., Dobrzyński M., The assessment of temperature amplitude arising during the implant bed formation in relation to variable preparation parameters – in vitro study, Acta Bioeng. Biomech., 2021, 23 (3).
  13. Kruszewski A., Piszczatowski S., Piekarczyk P., Kwiatkowski K., Evaluation of stabilization of intra-articular fracture of distal humerus – finite element study, Acta Bioeng. Biomech., 2020, 22 (1), 153–163.
  14. Lovrić L., Kreszinger M., Pećin M., Surgical Treatment of Canine Femoral Fractures, World, 2020, 10 (2), 137–145.
  15. Martyniuk B., Morasiewicz P., Wudarczyk S., Dragan S.F., Filipiak J., The impact of configuration of the Ilizarov fixator on its stiffness and the degree of loading of distraction rods, Clin Biomech, 2019, 63, 79–84.
  16. Mesquita L.R., Muzzi L.A.L., Lima J.T., Muzzi R.A.L., Lacreta A.C.C., Silva W.G., Biomechanical comparison of plate-nail vs. plate-rod for experimentally-induced gap fractures in ex vivo canine femora, Asian J. Anim. Sci., 2015, 361–369.
  17. Miramini S., Zhang L., Richardson M., Mendis P., Oloyede A., Ebeling P., The relationship between interfragmentary movement and cell differentiation in early fracture healing under locking plate fixation, Australas. Phys. Eng. Sci. Med., 2016, 39 (1), 123–133.
  18. Müller R., Hierarchical microimaging of bone structure and function, Review Nat. Rev. Rheumatol., 2009, 5 (7), 373–381.
  19. Pfeifer R., Sellei R., Pape H.C., The biology of intramedullary reaming, Injury, 2010, 41, S4–S8.
  20. Piórek A., Adamiak Z., Jaskólska M., Zhalniarovich Y., Treatment of comminuted tibial shaft fractures in four dogs with the use of interlocking nail connected with type I external fixator, Pol. J. Vet. Sci., 2012, 15 (4), 661–666.
  21. Piórek A., Adamiak Z., Matyjasik H., Zhalniarovich Y., Stabilization of Fractures with the Use of Veterinary Interlocking Nails, Pak. Vet. J., 2012, 32 (1), 10–14.
  22. Pitjamit S., Thunsiri K., Nakkiew W., Wongwichai T., Pothacharoen P., Wattanutchariya W., The possibility of interlocking nail fabrication from FFF 3D printing PLA/PCL/HA composites coated by local silk fibroin for canine bone fracture treatment, Mater., 2020, 13 (7), 1564, DOI: 10.3390/ma13071564.
  23. Plenert T., Garlichs G., Nolte I., Harder L., Hootak M., Kramer S., Behrens B.A., Bach J.P., Biomechanical comparison of a new expandable intramedullary nail and conventional intramedullary nails for femoral osteosynthesis in dogs, PloS one, 2020, 15 (5), e0231823, DOI: 10.1371/journal.pone.0231823.
  24. Prabhukumar M.D., Dileepkumar K.M., Devanand C.B., Venugopal S.K., Raj I.V., Anoop S., Nair S.S., Philip L.M., Elastic stable intramedullary nailing for fixation of distal diaphyseal fracture of radius in two dogs, Indian J. Vet. Surg., 2020, 41 (2), 134–136.
  25. Priyanka T.S., Mohindroo J., Pallavi V., Udheiya R., Umeshwori N., Evaluation of intramedullary pinning technique for management of tibia fractures in dogs, Pharm. Innov. J., 2019, 8 (2), 291–297.
  26. Prochor P., Experimental evaluation of a novel concept of an implant for direct skeletal attachment of limb prosthesis, Acta Bioeng. Biomech., 2021, 23 (4), 3–13.
  27. Samiezadeh S., Schemitsch E.H., Zdero R., Bougherara H., Biomechanical response under stress-controlled tensiontension fatigue of a novel carbon fiber/epoxy intramedullary nail for femur fractures, 2020, Med. Eng. Phys., 80, 26–32.
  28. Szkoda-Poliszuk K., Załuski R., A comparative biomechanical analysis of the impact of different configurations of pedicle-screw-based fixation in thoracolumbar compression fracture, Appl. Bionics. Biomech., 2022, https://doi.org/10.1155/2022/3817097
DOI: https://doi.org/10.37190/abb-01978-2021-02 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 167 - 178
Submitted on: Nov 11, 2021
Accepted on: Feb 25, 2022
Published on: Apr 1, 2022
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Karolina Jasiurkowska, Janusz Bieżyński, Anna Nikodem, Jarosław Filipiak, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.