Have a personal or library account? Click to login
Analysis of friction and wear processes in an innovative spine stabilization system. Part 1. A study of static and kinetic friction of a metal rod-polymer cord friction joint Cover

Analysis of friction and wear processes in an innovative spine stabilization system. Part 1. A study of static and kinetic friction of a metal rod-polymer cord friction joint

By: Anna Brończyk  
Open Access
|Apr 2022

References

  1. Adams M.A., Hutton W.C., Stott J.R., The resistance to flexion of the lumbar intervertebral joint, Spine (Phila. Pa. 1976), 1980, 5, 245–253.
  2. Będziński R., Engineering Biomechanics: selected issues, Oficyna Wydawnicza Politechniki Wrocławskiej, 1997 (in Polish).
  3. Bogie R., Arts J.J., Koole S.N., van Rhijn L.W., Willems P.C., The Use of Metal Sublaminar Wires in Modern Growth-Guidance Scoliosis Surgery: A Report of 4 Cases and Literature Review, Int. J. Spine Surg., 2020.
  4. Bogie R., Roth A., Faber S., Welting T., Willems P., Arts J. et al., Novel Radiopaque UHMWPE Sublaminar Wires in a Growth-Guidance System for the Treatment of Early Onset Scoliosis: Feasibility in a Large Animal Study, Spine (Phila. Pa. 1976), 2014.
  5. Brończyk A., Kowalewski P., Samoraj M., Tribocorrosion behaviour of Ti6Al4V and AISI 316L in simulated normal and inflammatory conditions, Wear, 2019, 434–435, https://doi.org/10.1016/j.wear.2019.202966
  6. El-Sayed A.A., El-Sherbiny M.G., Abo-El-Ezz A.S., Aggag G.A., Friction and wear properties of polymeric composite materials for bearing applications, Wear, 1995, 184, 45–53.
  7. Fejdyś M., Łandwijt M., Technical fibers reinforcing composite materials (in Polish), Tech. Wyr. Włókiennicze, 2010, 18, 12–22.
  8. [8] Friedrich K., Lu Z., Hager A.M., Recent advances in polymer composites’ tribology, Wear, 1995, 190, 139–144.
  9. Hummel J.M., Boomkamp I.S.M., Steuten L.M.G., Verkerke B.G.J., IJzerman M.J., Predicting the health economic performance of new non-fusion surgery in adolescent idiopathic scoliosis, J. Orthop. Res., 2012, 30, 1453–1458.
  10. Ibrahem R.A., Friction and wear behaviour of fibre/particles reinforced polyester composites, Int. J. Adv. Mater. Res., 2016, 2, 22–26.
  11. Jacobs O., Mentz N., Poeppel A., Schulte K., Sliding wear performance of HD-PE reinforced by continuous UHMWPE fibres, Wear, 2000, 244, 20–28.
  12. Kowalewski P., Wieleba W., Sliding polymers in the joint alloplastic, Arch. Civ. Mech. Eng., 2007, 7, 107–119, https://doi.org/10.1016/S1644-9665(12)60229-5.
  13. Kowalewski P., Brończyk A., Wieleba W., A tribological test rig for fibres, cables, and plaitings, Tribologia, 2017.
  14. Kujawa M., Kowalewski P., Wieleba W., The Influence of Deformation under Tension on Some Mechanical and Tribological Properties of High-Density Polyethylene, Polymers, (Basel), 2019, 11, 1429.
  15. Kumar P., Oka M., Ikeuchi K., Shimizu K., Yamamuro T., Okumura H., Kotoura Y., Low wear rate of UHMWPE against zirconia ceramic (Y-PSZ) in comparison to alumina ceramic and SUS 316L alloy, J. Biomed. Mater. Res., 1991, 25, 813–828.
  16. Li X.Y., Dong H., Shi W., New insights into wear of Ti6Al4V by ultra-high molecular weight polyethylene under water lubricated conditions, Wear, 2001, 250, 553–560.
  17. Meijer G., Development of a non-fusion scoliosis correction device. Numerical modelling of scoliosis correction, 2011.
  18. Pach J., Frączek N., Kaczmar J., The Effects of Hybridisation of Composites Consisting of Aramid, Carbon, and Hemp Fibres in a Quasi-Static Penetration Test, Materials, (Basel), 2020, 13, 4686.
  19. Rituerto Sin J., Suñer S., Neville A., Emami N., Fretting corrosion of hafnium in simulated body fluids, Tribol. Int., 2014, 75, 10–15, https://doi.org/10.1016/j.triboint.2014.03.003.
  20. Rituerto Sin J., Hu X., Emami N., Tribology, corrosion and tribocorrosion of metal on metal implants, Tribol. – Mater. Surfaces Interfaces, 2013, 7, 1–12, https://doi.org/10.1179/1751584X13Y.0000000022.
  21. Rohlmann A., Zander T., Burra N.K., Bergmann G., Flexible non-fusion scoliosis correction systems reduce intervertebral rotation less than rigid implants and allow growth of the spine: A finite element analysis of different features of orthobiomTM, Eur. Spine J., 2008, 17, 217–223, https://doi.org/10.1007/s00586-007-0480-1.
  22. Roth A.K., Bogie R., Willems P.C., de Jong J., van den Bergh J., Arts J.J., Novel Radiopaque Uhmwpe Sublaminar Wires in a Growth-guidance System for The Treatment of Early Onset Scoliosis: Feasibility in a Large Animal Model, Spine J., 2002, 11, 137–144.
  23. Roth A.K., Boon-Ceelen K., Smelt H., van Rietbergen B., Willems P.C., van Rhijn L.W., Arts J.J., Radiopaque UHMWPE sublaminar cables for spinal deformity correction: Preclinical mechanical and radiopacifier leaching assessment, J. Biomed. Mater. Res., Part B, Appl. Biomater., 2018, 106, 771–779.
  24. Samoraj M., Tribocorrosion tests of materials applied for implants (in Polish), Wrocław University of Science and Technology, 2014.
  25. Schmalzried T.P., Peters P.C., Maurer B.T., Bragdon C.R., Harris W.H., Long-duration metal-on-metal total hip arthroplasties with low wear of the articulating surfaces, J. Arthroplasty, 1996, 11, 322–331.
  26. Shi W., Dong H., Bell T., Tribological behaviour and microscopic wear mechanisms of UHMWPE sliding against thermal oxidation-treated Ti6Al4V, Mater. Sci. Eng. A., 2000, 291, 27–36.
  27. Stodolak E., Research on surface modification and the influence of fibers on polymeric material and cellular response, Doctoral Thesis, AGH, Kraków 2006 (in Polish).
  28. Suresha B., Chandramohan G., Samapthkumaran P., Seetharamu S., Vynatheya S., Friction and wear characteristics of carbon-epoxy and glass-epoxy woven roving fiber composites, J. Reinf. Plast. Compos., 2006, 25, 771–782.
  29. Wesołowska M., Delczyk-Olejniczak B., Fibers in ballistics – today and tomorrow (in Polish), Tech. Wyr. Włókiennicze, 2011, 41–50.
  30. PubCHEM – National Library of Medicine. National Center for Biotechnology Information, (n.d.), https://pubchem.ncbi.nlm.nih.gov/compound/Sodium-lactate (Accessed: November 6, 2020).
  31. DailyMed – U.S. NATIONAL LIBRARY OF MEDICINE, (n.d.). https://dailymed.nlm.nih.gov/dailymed/archives/fdaDrugInfo.cfm?archiveid=2425 (Accessed: November 6, 2020).
  32. chemBlink – Online Database of Chemicals from Around the World, (n.d.). https://www.chemblink.com/products/72-17-3.htm (Accessed: November 6, 2020).
DOI: https://doi.org/10.37190/abb-01962-2021-03 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 117 - 130
Submitted on: Nov 18, 2021
Accepted on: Feb 10, 2022
Published on: Apr 1, 2022
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Anna Brończyk, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.