Have a personal or library account? Click to login
Experimental evaluation of a novel concept of an implant for direct skeletal attachment of limb prosthesis Cover

Experimental evaluation of a novel concept of an implant for direct skeletal attachment of limb prosthesis

By: Piotr Prochor  
Open Access
|Dec 2021

References

  1. Ali S., Abu Osman N.A., Eshraghi A., Gholizadeh H., Abd Razak N.A., Wan Abas W.A., Interface pressure in transtibial socket during ascent and descent on stairs and its effect on patient satisfaction, Clin. Biomech., 2013, 28 (9–10), 994–999.
  2. Berahmani S., Janssen D., van Kessel S., Wolfson D., de Waal Malefijt M., Buma P., Verdonschot N., An experimental study to investigate biomechanical aspects of the initial stability of press-fit implants, J. Mech. Behav. Biomed., 2015, 42, 177–185.
  3. Bishop N.E., Höhn J.C., Rothstock S., Damm N.B., Morlock M.M., The influence of bone damage on press-fit mechanics, J. Biomech., 2014, 47 (6), 1472–1478.
  4. Brånemark R., Berlin O., Hagberg K., Bergh P., Gunterberg B., Rydevik B., A novel osseointegrated percutaneous prosthetic system for the treatment of patients with transfemoral amputation: A prospective study of 51 patients, Bone Joint J., 2014, 96–B (1), 106–113.
  5. Brunski J.B., Avoid pitfalls of overloading and micromotion of intraosseous implants, Dent. Implantol. Update, 1993, (10), 77–81.
  6. Clemente F., Håkansson B., Cipriani C., Wessberg J., Kulbacka-Ortiz K., Brånemark R., Jansson K.J.F., Ortiz-Catalan M., Touch and Hearing Mediate Osseoperception, Sci. Rep-UK., 2017, 7, 45363.
  7. Damm N.B., Morlock M.M., Bishop N.E., Friction coefficient and effective interference at the implant-bone interface, J. Biomech., 2015, 48 (12), 3517–3521.
  8. Dickinson A.S., Steer J.W., Worsley P.R., Finite element analysis of the amputated lower limb: A systematic review and recommendations, Med. Eng. Phys., 2017, 43, 1–18.
  9. Drygas K.A., Taylor R., Sidebotham C.G., Hugate R.R., McAlexander H., Transcutaneous tibial implants: a surgical procedure for restoring ambulation after amputation of the distal aspect of the tibia in a dog, Vet. Surg., 2008, 37 (4), 322–327.
  10. Frossard L., Gow D.L., Hagberg K., Cairns N., Contoyannis B., Gray S., Brånemark R., Pearcy M., Apparatus for monitoring load bearing rehabilitation exercises of a transfemoral amputee fitted with an osseointegrated fixation: a proof-of-concept study, Gait Posture, 2010, 32 (2), 223–228.
  11. Frossard L., Tranberg R., Haggstrom E., Pearcy M., Brånemark R., Load on osseointegrated fixation of a transfemoral amputee during a fall: loading, descent, impact and recovery analysis, Prosthet. Orthot. Int., 2010, 34 (1), 85–97.
  12. Gao S.S., Zhang Y.R., Zhu Z.L., Yu H.Y., Micromotions and combined damages at the dental implant/bone interface, Int. J. Oral. Sci., 2012, 4 (4), 182–188.
  13. Jetté B., Brailovski V., Simoneau C., Dumas M., Terriault P., Development and in vitro validation of a simplified numerical model for the design of a biomimetic femoral stem, J. Mech. Behav. Biomed., 2018, 77, 539–550.
  14. Jeyapalina S., Beck J.P., Bachus K.N., Chalayon O., Bloebaum R.D., Radiographic evaluation of bone adaptation adjacent to percutaneous osseointegrated prostheses in a sheep model, Clin. Orthop. Relat. R., 2014, 472 (10), 2966–2977.
  15. Klute G.K., Glaister B.C., Berge J.S., Prosthetic liners for lower limb amputees: a review of the literature, Prosthet. Orthot. Int., 2010, 34 (2), 146–153.
  16. Leng H., Reyes M.J., Dong N.X., Wang X., Effect of age on mechanical properties of the collagen phase in different orientations of human cortical bone, Bone, 2013, 55 (2), 288–291.
  17. Lennerås M., Tsikandylakis G., Trobos M., Omar O., Vazirisani F., Palmquist A., Berlin Ö., Brånemark R., Thomsen P., The clinical, radiological, microbiological, and molecular profile of the skin-penetration site of transfemoral amputees treated with bone-anchored prostheses, J. Biomed. Mater. Res. A, 2017, 105 (2), 578–589.
  18. Lyon C.C., Kulkarni J., Zimerson E., Van Ross E., Beck M.H., Skin disorders in amputees, J. Am. Acad. Dermatol., 2000, 42 (3), 501–507.
  19. Martínez G., Aznar J.M.G., Doblaré M., Cerrolaza M., External bone remodeling through boundary elements and damage mechanics, Math. Comput. Simulat., 2006, 73 (1), 183–199.
  20. Mazurkiewicz A., The effect of trabecular bone storage method on its elastic properties, Acta Bioeng. Biomech., 2018, 20 (1), 21–27.
  21. Mercuri E.G., Daniel A.L., Hecke M.B., Carvalho L., Influence of different mechanical stimuli in a multi-scale mechanobiological isotropic model for bone remodelling, Med. Eng. Phys., 2016, 38 (9), 904–910.
  22. Parker L.M., What’s wrong with the dead body? Use of the human cadaver in medical education, Med. J. Australia, 2002, 176 (2), 74–76.
  23. Paternò L., Ibrahimi M., Gruppioni E., Menciassi A., Ricotti L., Sockets for limb prostheses: a review of existing technologies and open challenges, IEEE T. Bio-Med. Eng., 2018, 65 (9), 1996–2010.
  24. Prochor P., Finite element analysis of stresses generated in cortical bone during implantation of a novel Limb Prosthesis Osseointegrated Fixation System, Biocybern. Biomed. Eng., 2017, 32 (2), 255–262.
  25. Prochor P., Mierzejewska Ż.A., Bioactivity of PEEK GRF30 and Ti6Al4V SLM in Simulated Body Fluid and Hank’s Balanced Salt Solution, Materials, 2021, 14, 2059.
  26. Prochor P., Mierzejewska Ż.A., Influence of the Surface Roughness of PEEK GRF30 and Ti6Al4V SLM on the Viability of Primary Human Osteoblasts Determined by the MTT Test, Materials, 2019, 12, 4189.
  27. Prochor P., Piszczatowski S., Sajewicz E., Biomechanical evaluation of a novel Limb Prosthesis Osteointegrated Fixation System designed to combine the advantages of interference-fit and threaded solutions, Acta Bioeng. Biomech., 2016, 18 (4), 21–31.
  28. Prochor P., Sajewicz E., A comparative analysis of internal bone remodelling concepts in a novel implant for direct skeletal attachment of limb prosthesis evaluation – a finite element analysis, P. I. Mech. Eng. H., 2018, 232 (3), 289–298.
  29. Prochor P., Sajewicz E., The influence of geometry of implants for direct skeletal attachment of limb prosthesis on rehabilitation program and stress-shielding intensity, Biomed. Res. Int., 2019, 6067952.
  30. Prochor P., Sajewicz E., Two-part implant for direct connection of bone with the limb prosthesis, patent no. 229715.
  31. Schwarze M., Hurschler C., Seehaus F., Correa T., Welke B., Influence of transfemoral amputation length on resulting loads at the osseointegrated prosthesis fixation during walking and falling, Clin. Biomech., 2014, 29 (3), 272–276.
  32. Thesleff A., Brånemark R., Håkansson B., Ortiz-Catalan M., Biomechanical Characterisation of Bone-anchored Implant Systems for Amputation Limb Prostheses: A Systematic Review, Ann. Biomed. Eng., 2018, 46 (3), 377–391.
  33. Tomaszewski P.K., Lasnier B., Hannink G., Verkerke G.J., Verdonschot N., Experimental assessment of a new direct fixation implant for artificial limbs, J. Mech. Behav. Biomed., 2013, 21, 77–85.
  34. Vertriest S., Coorevits P., Hagberg K., Brånemark R., Häggström E., Vanderstraeten G., Frossard L., Static load bearing exercises of individuals with transfemoral amputation fitted with an osseointegrated implant: Loading compliance, Prosthet. Orthot. Int., 2017, 41 (4), 393–401.
  35. Wik T.S., Foss O.A., Havik S., Persen L., Aamodt A., Witsø E., Periprosthetic fracture caused by stress shielding after implantation of a femoral condyle endoprosthesis in a transfemoral amputee – a case report, Acta Orthop., 2010, 81 (6), 765–767.
  36. Xu D.H., Crocombe A.D., Xu W., Numerical evaluation of bone remodelling associated with trans-femoral osseointegration implant – A 68 month follow-up study, J. Biomech., 2016, 49 (3), 488–492.
DOI: https://doi.org/10.37190/abb-01956-2021-01 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 3 - 13
Submitted on: Oct 12, 2021
|
Accepted on: Nov 3, 2021
|
Published on: Dec 21, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Piotr Prochor, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.