Have a personal or library account? Click to login
Study on nonlinear constitutive model of skin under compression load over a wide range of strain rates Cover

Study on nonlinear constitutive model of skin under compression load over a wide range of strain rates

Open Access
|Dec 2021

References

  1. Annaidh A.N., Bruyère K., Destrade M., Gilchrist M.D., Otténio M., Characterization of the anisotropic mechanical properties of excised human skin, J. Mech. Behav. Biomed. Mater., 2012, 5 (1), 139–148.
  2. Bao Z.Y., Study on dynamic mechanical properties of biological soft tissue, Dissertation, Nanjing University of Science and Technology, 2019.
  3. Belfiore L.A., Physical properties of macromolecules, John Wiley & Sons, 2010.
  4. Butler B.J., Boddy R.L., Bo C., Arora H., Williams A., Proud W.G., Brown K.A., Composite nature of fresh skin revealed during compression, Bioinsp. Biomim. Nanobiomater., 2015, 4 (2), 133–139.
  5. Chen W., Lu F., Frew D.J., Forrestal M.J., Dynamic Compression Testing of Soft Material, ASME J. Appl. Mech., 2002, 69 (3), 214–223.
  6. De Mey J.G., Claeys M., Vanhoutte P.M., Endotheliumdependent inhibitory effects of acetylcholine, adenosine triphosphate, thrombin and arachidonic acid in the canine femoral artery, J. Pharmacol. Exp. Ther., 1982, 222 (1), 166–173.
  7. DiMaio V.J., Copeland A.R., Besant-Matthews P.E., Fletcher L.A., Jones A., Minimal velocities necessary for perforation of skin by air gun pellets and bullets, J. Forensic. Sci., 1982, 27 (4), 894–899.
  8. Dougherty P.J., Najibi S., Silverton C., Vaidya R., Gunshot wounds: epidemiology, wound ballistics, and soft-tissue treatment, Instr. Course. Lect., 2009, 58, 131–139.
  9. Fackler M.L., Wound ballistics and the scientific background: book review, Wound. Ballistics. Rev., 1994, 2, 46–48.
  10. Finlay B., Dynamic mechanical testing of human skin “in vivo”, J. Biomech., 1970, 3 (6), 559–568.
  11. Ghorbel-Feki H., Masood A., Caliez M., Gratton M., Pittet J. C., Lints M., Dos Santos S., Acousto-mechanical behaviour of ex vivo skin: Nonlinear and viscoelastic properties, Comptes. Rendus. Mécanique., 2019, 347 (3), 218–227.
  12. Groves R.B., Coulman S.A., Birchall J.C., Evans S.L., An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and murine skin, J. Mech. Behav. Biomed. Mater., 2013, 18, 167–180.
  13. Haut R.C., The effects of orientation and location on the strength of dorsal rat skin in high and low speed tensile failure experiments, J. Biomech. Eng., 1989, 111, 136–140.
  14. Holt B., Tripathi A., Morgan J., Viscoelastic response of human skin to low magnitude physiologically relevant shear, J. Biomech., 2008, 41 (12), 2689–2695.
  15. Karimi A., Faturechi R., Navidbakhsh M., Hashemi S.A., A non-linear hyperelastic behavior to identify the mechanical properties of rat skin under uniaxial loading, J. Mech. Med. Biol., 2014, 14 (5), 1–14.
  16. Koene L., Papy A., Towards a better, science-based, evaluation of kinetic non-lethal weapons, Int. J. Intelligent. Defence. Support. Systems., 2011, 4 (2), 169–186.
  17. Łagan S.D., Liber-Kneć A., Experimental testing and constitutive modeling of the mechanical properties of the swine skin tissue. Act. Bioeng. Biomech., 2017, 19 (2), 93–102.
  18. Lamers E., van Kempen T.H.S., Baaijens F.P.T., Peters G.W.M., Oomens C.W.J., Large amplitude oscillatory shear properties of human skin, J. Mech. Behav. Biomed. Mater., 2013, 28, 462–470.
  19. Lanir Y., Fung Y.C., Two-dimensional mechanical properties of rabbit skin – I. Experimental system, J. Biomech., 1974, 7, 29–34.
  20. Lapeer R.J., Gasson P.D., Karri V., Simulating plastic surgery: From human skin tensile tests, through hyperelastic finite element models to real-time haptics, Prog. Biophys. Mol. Bio., 2010, 103 (2–3), 208–216.
  21. Li W., Luo X.Y., An Invariant-Based Damage Model for Human and Animal Skins, Ann. Biomed. Eng., 2016, 44, 3109–3122.
  22. Lim J., Hong J., Chen W.W., Weerasooriya T., Mechanical response of pig skin under dynamic tensile loading, Int. J. Impact. Eng., 2011, 38 (2), 130–135.
  23. Liu K., Wu Z.L., Ren H.L., Li Z.X., Ning J.G., Strain rate sensitive compressive response of gelatine: Experimental and constitutive analysis, Polym. Testing., 2017, 6, 254–266.
  24. Missliwetz J., Critical velocity in skin (an experimental ballistic study with firearms of 4 mm and 4.5 mm calibers), Beitr. Gerichtl. Med., 1987, 45, 411–432.
  25. Nicolle S., Decorps J., Fromy B., Palierne J.-F., New regime in the mechanical behavior of skin: strain-softening occurring before strain-hardening, J. Mech. Behav. Biomed. Mater., 2017, 69, 98–106.
  26. Pissarenko A., Meyers M.A., The materials science of skin: Analysis, characterization, and modeling, Prog. Mater. Sci., 2020, 110, 100634.
  27. Reihsner R., Menzel E.J., Two-dimensional stress–relaxation behavior of human skin as influenced by non-enzymatic glycation and the inhibitory agent aminoguanidine, J. Biomech., 1998, 31 (11), 985–993.
  28. Ridge M.D., Wright V., The directional effects of skin, J. Invest. Dermatol., 1965, 46, 341–6.
  29. Rubin M.B., Bodner S.R., Binur N.S., An elastic-viscoplastic model for excised facial tissues, J. Biomech. Eng., 1998, 120 (5), 686–689.
  30. Schneider D.C., Davidson T.M., Nahum A.M., In vitro biaxial stress–strain response of human skin, Arch. Otolaryngol., 1984, 110 (5), 329–333.
  31. Shergold O.A., Fleck N.A., Radford D., The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates, Int. J. Impact. Eng., 2006, 32 (9), 1384–1402.
  32. Soetens J.F.J., van Vijven M., Bader D.L., Peters G.W.M., Oomens C.W.J., A model of human skin under large amplitude oscillatory shear, J. Mech. Behav. Biomed. Mater., 2018, 86, 423–432.
  33. Tausch D., Sattler W., Wehrfritz K., Wehrfritz G., Wagner H.J., Experiments on the penetration power of various bullets into skin and muscle tissue, Z. Rechtsmed., 1978, 81 (4), 309–328.
  34. Weiss J.A., Maker B.N., Govindjee S., Finite element implementation of incompressible, transversely isotropic hyperelasticity, Comput. Meth. Appl. Mech. Eng., 1996, 135, 107–128.
  35. Wu J.Z., Dong R.G., Smutz P., Schopper A.W., Nonlinear and Viscoelastic Characteristics of Skin Under Compression: Experiment and Analysis, Biomed. Mater. Eng., 2003, 13 (4), 373–385.
DOI: https://doi.org/10.37190/abb-01947-2021-04 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 161 - 171
Submitted on: Oct 3, 2021
Accepted on: Jan 3, 2022
Published on: Dec 21, 2021
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Xiaoping Zhang, Cun Wen, Chengli Tang, Susu Liu, Yaoke Wen, Yaping Wang, Zhenyu Bao, Shaomin Luo, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.