Have a personal or library account? Click to login
The affinity for dialysate species of thermally modified titania nanotubes under static and dynamic conditions Cover

The affinity for dialysate species of thermally modified titania nanotubes under static and dynamic conditions

Open Access
|Dec 2021

References

  1. Abe M., Hamano T., Wada A., Nakai S., Masakane I., Effect of dialyzer membrane materials on survival in chronic hemodialysis patients: Results from the annual survey of the Japanese Nationwide Dialysis Registry, PloS One, 2017, 12 (9), 1–18.
  2. Alves S.A., Rossi A.L., Ribeiro A.R., Toptan F., Pinto A.M., Celis J.P., Shokuhfar T., Rocha L.A., Tribo-electrochemical behavior of bio-functionalized TiO2 nanotubes in artificial saliva: Understanding of degradation mechanisms, Wear, 2017, 384–385, 28–42.
  3. Aoyagi S., Hayama M., Hasegawa U., Sakai K., Tozu M., Hoshi T., Kudo M., Estimation of protein adsorption on dialysis membrane by means of TOF-SIMS imaging, J. Membr. Sci., 2014, 236 (1–2), 91–99.
  4. Arkusz K., Krasicka-Cydzik E., The effect of phosphates and fluorides, included in TiO2 nanotube layers on the performance of hydrogen peroxide detection, Arch. Metall. Mater., 2018, 63 (2), 765–772.
  5. Arkusz K., Nycz M., Paradowska E., Pijanowska D.G., Electrochemical stability of TiO2 nanotubes deposited with silver and gold nanoparticles in aqueous environment, Environ. Nanotechnol. Monit. Manag., 2021, 15, 100401.
  6. Arkusz K., Paradowska E., Impedimetric Detection of Femtomolar Levels of Interleukin 6, Interleukin 8, and Tumor Necrosis Factor Alpha Based on Thermally Modified Nanotubular Titanium Dioxide Arrays, Nanomaterials, 2020, 10 (12), 1–18.
  7. Arkusz K., Paradowska E., Nycz M., Krasicka-Cydzik E., Influence of Thermal Modification and Morphology of TiO2 Nanotubes on Their Electrochemical Properties for Biosensors Applications, J. Nanosci. Nanotechnol., 2018, 18, 3713–3721.
  8. Arkusz K., Paradowska E., Nycz M., Mazurek-Popczyk J., Baldy-Chudzik K., Evaluation of the Antibacterial Activity of Ag- and Au-Nanoparticles Loaded TiO2 Nanotubes, J. Biomed. Nanotechnol., 2020, 16 (9), 1416–1425.
  9. Boure T., Which dialyser membrane to choose?, Nephrol. Dial. Transplant., 2004, 19 (2), 293–296.
  10. Cucchiari D., Reverter E., Blasco M., Molina-Andujar A., Carpio A., Sanz M., Escorsell A., Fernández J., Poch E., High cut-off membrane for in vivo dialysis of free plasma hemoglobin in a patient with massive hemolysis, BMC Nephrol., 2018, 19 (1).
  11. Diamantoglou M., Lemke H.D., Vienken J., Cellulose--Ester as Membrane Materials for Hemodialysis, Int. J. Artif. Organs, 1994, 17 (7), 385–391.
  12. Dozzi M.V., Ohtani B., Selli E., Absorption and action spectra analysis of ammonium fluoride-doped titania photocatalysts, Phys. Chem. Chem. Phys., 2011, 13 (40), 18217–18227.
  13. Friedman E.A., An introduction to phosphate binders for the treatment of hyperphosphatemia in patients with chronic kidney disease, Kidney Int., 2005, 68 (96), 2–6.
  14. Gao Y.H., Wang S.N., Wang B.B., Biocompatibility of titanium dioxide nanotube bio-dialysis membrane, Chinese J. Tissue Eng. Res., 2017, 21, 4167–4171.
  15. García-Valverde M.T., Lucena R., Cárdenas S., Valcárcel M., Determination of urinary 5-hydroxyindoleacetic acid by combining Dμ-SPE using carbon coated TiO2 nanotubes and LC–MS/MS, Bioanalysis, 2015, 7 (22), 2857–2867.
  16. Jodko D., Obidowski D., Reorowicz P., Jóźwik K., Numerical investigations of the unsteady blood flow in the end-to--side arteriovenous fistula for hemodialysis, Acta Bioeng. Biomech., 2016, 18 (4), 3–13.
  17. Jodko D., Obidowski D., Reorowicz P., Jóźwik K., Simulations of the blood flow in the arterio-venous fistula for haemodialysis, Acta Bioeng. Biomech., 2014, 16 (1), 69–74.
  18. Kafi A.K.M., Wu G., Chen A., A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays, Biosens. Bioelectron., 2008, 24, 566–571.
  19. Kataria A., Trasande L., Trachtman H., The effects of environmental chemicals on renal function, Nat. Rev. Nephrol., 2015, 11 (10), 610–625.
  20. Kodama A., Bauer S., Komatsu A., Asoh H., Ono S., Schmuki P., Bioactivation of titanium surfaces using coatings of TiO2 nanotubes rapidly pre-loaded with synthetic hydroxyapatite, Acta Biomater., 2009, 5 (6), 2322–2330.
  21. Krzak-R J., Filipiak J., Pezowicz C., Baszczuk A., Miller M., Kowalski M., Będziński R., The effect of substrate roughness on the surface structure of TiO2, SiO2, and doped thin films prepared by the sol–gel method, Acta Bioeng. Biomech., 2009, 11 (2), 21–29.
  22. Kulkarni M. et al., Binding of plasma proteins to titanium dioxide nanotubes with different diameters, Int. J. Nanomedicine, 2015, 10, 1359–1373.
  23. Macak J., Tsuchiya H., Ghicov A., Yasuda K., Hahn R., Bauer S., Schmuket P., TiO2 nanotubes: Self-organized electrochemical formation, properties and applications, Curr. Opin. Solid State Mater Sci., 2007, 11, 3–18.
  24. Mazare A. et al., Heat treatment of TiO2 nanotubes, a way to significantly change their behaviour, UPB Sci. Bull B: Chem. Mater Sci., 2011, 73, 97–108.
  25. Nycz M., Paradowska E., Arkusz K., Pijanowska D.G., Influence of geometry and annealing temperature in argon atmosphere of TiO2 nanotubes on their electrochemical properties, Acta Bioeng. Biomech., 2020, 22 (1), 165–177.
  26. Nycz M., Paradowska E., Arkusz K., Kudliński B., Krasicka-Cydzik E., Surface analysis of long-term hemodialysis catheters made of carbothane (poly(carbonate)urethane) before and after implantation in the patients’ bodies, Acta Bioeng. Biomech., 2018, 20 (2), 47–53.
  27. Olczyk P., Małyszczak A., Kusztal M., Dialysis membranes: A 2018 update, Polim. Med., 2018, 48 (1), 57–63.
  28. Park H.H., Park S., Kim K.S., Jeon W.Y., Park B.K., Kim H.S., Bae T.S., Lee M.H., Bioactive and electrochemical characterization of TiO2 nanotubes on titanium via anodic oxidation, Electrochim. Acta, 2010, 55, 6109–6114.
  29. Saji V.S., Choe H.C., Electrochemical corrosion behaviour of nanotubular Ti–13Nb–13Zr alloy in Ringer’s solution, Corros. Sci., 2009, 51 (8), 1658–1663.
  30. Smith B.S., Popat K.C., Titania Nanotube Arrays as Interfaces for Blood-Contacting Implantable Devices: A Study Evaluating the Nanotopography-Associated Activation and Expression of Blood Plasma Components, J. Biomed. Nanotechnol., 2012, 8 (4), 642–658.
  31. Smith B.S., Yoriya S., Grissom L., Grimes C.A., Popat K.C., Hemocompatibility of titania nanotube arrays, J. Biomed. Mater. Res. Part A, 2010, 95 (2), 350–360.
  32. Tałałaj M., Marcinowska-Suchowierska E., Pathogenesis and treatment of bone disease in patients with chronic renal failure, Post. Nauk Med., 2008, 6, 394–406
  33. Tharmaraj D., Kerr P. G., Haemolysis in haemodialysis, Nephrology, 2017, 22 (11), 838–847.
  34. Torbicz W., Pijanowska D.G., Dawgul M., Urea biosensors and their application in hemodialysis--perspective of EnFET application, Front. Med. Biol. Eng., 2000, 10 (2), 139–45.
  35. Wu S., Zhang D., Bai J., Zheng H., Deng J., Gou Z., Gao C.H., Adsorption of serum proteins on titania nanotubes and its role on regulating adhesion and migration of mesenchymal stem cells, J. Biomed. Mater. Res., 2020, 180, 2305–2318.
  36. Xiao P., Liu D., Garcia B.B., Sepehri S., Zhang Y., Cao G., Electrochemical and photoelectrical properties of titania nanotube arrays annealed in different gases, Sens. Actuators B Chem., 2008, 134 (2), 367–372.
  37. Yang B., Ng C.K., Fung M.K., Ling C.C., Djurišić A.B., FUNG S., Annealing study of titanium oxide nanotube arrays, Mater. Chem. Phys., 2011, 130 (3), 1227–1231.
  38. Yu W.Q., Qiu J., Xu L., Guan C., Corrosion behaviors of TiO2 nanotube layers on titanium in Hank’s solution, Biomed. Mater., 2009, 4, 65–12.
  39. Zhang L., Liao X., Fok A., Ning C.H., Ng P., Wang Y., Effect of crystalline phase changes in titania (TiO2) nanotube coatings on platelet adhesion and activation, Mater. Sci. Eng. C, 2018, 82, 91–101
  40. Zhen L., Jiding Z., The influence of flow velocity on electrochemical reaction of metal surface, IOP Conf. Ser: Mater. Sci. Eng., 2017, 274, 012–098.
  41. Zhou Q., Fang Z., Li J., Wang M., Applications of TiO2 nanotube arrays in environmental and energy fields: a review, Microporous Mesoporous Mater, 2015, 202, 22–35.
  42. Zou J.P., Wang R.Z., Crack initiation, propagation and saturation of TiO2 nanotube film, T Nonferr. Metal. Soc., 2012, 22 (3), 627–633.
DOI: https://doi.org/10.37190/abb-01902-2021-01 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 95 - 105
Submitted on: Aug 10, 2021
|
Accepted on: Dec 3, 2021
|
Published on: Dec 21, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Aleksandra Jędrzejewska, Kamila Pasik, Marta Nycz, Katarzyna Arkusz, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.