Have a personal or library account? Click to login
Predicting pedestrian lower limb fractures in real world vehicle crashes using a detailed human body leg model Cover

Predicting pedestrian lower limb fractures in real world vehicle crashes using a detailed human body leg model

Open Access
|Dec 2021

References

  1. Chidester C., Isenberg R., Final report-the pedestrian crash data study, Proceedings of the 17th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Amsterdam, Netherlands, 2001.
  2. Han Y., Yang J., Nishimoto K., Mizuno K., Matsui Y., Nakane D., Wanami S., Hitosugi M. Finite element analysis of kinematic behaviour and injuries to pedestrians in vehicle collisions, Int. J. Crashworthiness, 2012, 17 (2), 141–152.
  3. Kerrigan J., Drinkwater D., Kam C., Murphy D., Ivarsson B., Crandall J., Patrie J., Tolerance of the human leg and thigh in dynamic latero-medial bending, Int. J. Crashworthiness, 2004, 9 (6), 607–623.
  4. Li G., Wang F., Otte D., Cai Z., Simms C., Have pedestrian subsystem tests improved passenger car front shape?, Accid. Anal. Prev., 2018, 115, 143–150.
  5. Li G., Ma H., Guan T., Gao G., Predicting safer vehicle front-end shapes for pedestrian lower limb protection via a numerical optimization framework, Int. J. Auto. Tech.-Kor., 2020, 21 (3), 749–756.
  6. Li G., Yang J., Simms C., The influence of gait stance on pedestrian lower limb injury risk, Accid. Anal. Prev., 2015, 85, 83–92.
  7. Li G., Yang J., Simms C., Safer passenger car front shapes for pedestrians: a computational approach to reduce overall pedestrian injury risk in real world accident scenarios, Accid. Anal. Prev., 2017, 100, 97–110.
  8. Li G., Lyons M, Wang B., Yang J., Otte D., Simms C., The influence of passenger car front shape on pedestrian injury risk observed from german in-depth accident data, Accid. Anal. Prev., 2017, 101, 11–21.
  9. Li G., Tan Z., Lv X., Ren L., Numerical reconstruction of injuries in a real world minivan-to-pedestrian collision, Acta Bioeng. Biomech., 2019, 21 (2), 21–30.
  10. Linder A., Clark A., Douglas C., Fildes B., Yang K., Sparke L., Mathematical modeling of pedestrian crashes: review of pedestrian models and parameter study of the influence of the sedan vehicle contour, 2004 Road Safety Research, Policing and Education Conference, Perth, Australia, 2004.
  11. Ma H., Mao Z., Li G., Yan L., Mo F., Could an isolated human body lower limb model predict leg biomechanical response of Chinese pedestrians in vehicle collisions, Acta Bioeng. Biomech., 2020, 22 (3), 117–129.
  12. Martinez L., Guerra L., Ferichola G., Garcia A., Yang J., Stiffness corridors of the European fleet for pedestrian simulation, Proceedings of the 20th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Lyon, France, 2007.
  13. Matsui Y., Effects of vehicle bumper height and impact velocity on type of lower extremity injury in vehicle-pedestrian accidents, Accid. Anal. Prev., 2005, 37 (4), 633–640.
  14. Matsui Y., Ishikawa H., Sasaki A., Pedestrian injuries induced by the bonnet leading edge in current car-pedestrian accidents, SAE Technical Paper No. 1999-01-0713, 1999.
  15. Mizuno Y., Summary of IHRA pedestrian safety WG activities (2005)-proposed test methods to evaluate pedestrian protection afforded by passenger cars, Proceedings of the 19th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 05-0138, 2005.
  16. Mo F., Arnoux P., Cesari D., Masson C., Investigation of the injury threshold of knee ligaments by the parametric study of car-pedestrian impact conditions, Saf. Sci., 2014, 62, 58–67.
  17. Mo F., Arnoux P., Jure J., Masson C., Injury tolerance of tibia for the car-pedestrian impact, Accid. Anal. Prev., 2012, 46, 18–25.
  18. Mo F., Li F., Behr M., Xiao Z., Zhang G., Du X., A lower limb-pelvis finite element model with 3D active muscles, Ann. Biomed. Eng., 2018, 46 (1), 86–96.
  19. Mo F., Luo S., Tan Z., Shang B., Lv X., Zhou D., A human active lower limb model for Chinese pedestrian safety evaluation, J. Bionic Eng., 2021, 18, 1–15.
  20. Otte D., Haasper C., Characteristics on fractures of tibia and fibula in car impacts to pedestrians and bicyclists-influences of car bumper height and shape, Annual Proceedings/Association for the Advancement of Automotive Medicine, 2007, 51, 63–79.
  21. Simms C., Wood D., Pedestrian and Cyclist Impact – A Biomechanical Perspective, Springer, 2009.
  22. Tan Z., Guo Y., Li G., Yan L., Kinematics and injury mechanism of cyclist lower limb in vehicle-to-bicycle collisions, J. Mech. Med. Biol., 2020, 20 (6), 2050035.
  23. Untaroiu C., Yue N., Shin J., A finite element model of the lower limb for simulating automotive impacts, Ann. Biomed. Eng., 2012, 41, 1–14.
  24. Wang F., Wu J., Hu L., Yu C., Wang B., Huang X., Miller K., Wittek A., Evaluation of the head protection effectiveness of cyclist helmets using full-scale computational biomechanics modelling of cycling accidents, J. Safety Res., 2021, DOI: 10.1016/j.jsr.2021.11.005.
  25. Yang J., Review of injury biomechanics in car–pedestrian collisions, Int. J. Veh. Saf., 2005, 1 (1/2/3), 100–117.
  26. Yang K., Basic Finite Element Method as Applied to Injury Biomechanics, Elsevier, 2018.
DOI: https://doi.org/10.37190/abb-01894-2021-02 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 33 - 41
Submitted on: Sep 24, 2021
|
Accepted on: Oct 27, 2021
|
Published on: Dec 21, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Zhewu Chen, Xing Huang, Donghua Zou, Fuhao Mo, Jin Nie, Guibing Li, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.