Have a personal or library account? Click to login
Multiple regression analysis predicts the dynamic of chondrocytes stimulated by magnetic and electric fields Cover

Multiple regression analysis predicts the dynamic of chondrocytes stimulated by magnetic and electric fields

Open Access
|Oct 2021

References

  1. Akanji O., Lee D., Bader D., The effects of direct current stimulation on isolated chondrocytes seeded in 3D agarose constructs, Biorheology, 2008. 45 (3–4), 229–243.
  2. Armstrong P., Brighton C., Star A., Capacitively coupled electrical stimulation of bovine growth plate chondrocytes grown in pellet form, J. Orthop. Res., 1988, 6 (2), 265–271.
  3. Baker C., Bocharov G., Paul C., Rihan F., Modelling and analysis of time-lags in some basic patterns of cell proliferation, J. Math. Biol., 1998. 37 (4), 341–371.
  4. Bandeiras C., Completo A., Computational Modelling of Tissue-Engineered Cartilage Constructs, [in:] The Computational Mechanics of Bone Tissue: Biological Behaviour, Remodelling Algorithms and Numerical Applications, J. Belinha, M.-C. Manzanares-Céspedes, A. Completo (Eds.), Springer International Publishing, Cham, Switzerland, 2020, 203–222.
  5. De Bhowmick G., Sen R., Sarmah A., Analysis of growth and intracellular product synthesis dynamics of a microalga cultivated in wastewater cocktail as medium, Biochem. Eng. J., 2019, 149, 107253.
  6. Brighton C., Townsend P., Increased cAMP production after short-term capacitively coupled stimulation in bovine growth plate chondrocytes, J. Orthop. Res., 1988, 6 (4), 552–558.
  7. Brighton C., Unger A., Stambough J., In vitro growth of bovine articular cartilage chondrocytes in various capacitively coupled electrical fields, J. Orthop. Res., 1984, 2 (1), 15–22.
  8. Brighton C., Wang W., Clark C., Up-regulation of matrix in bovine articular cartilage explants by electric fields, Biochem. Biophys. Res. Commun., 2006, 342 (2), 556–561.
  9. Brighton C., Wang W., Clark C., The effect of electrical fields on gene and protein expression in human osteoarthritic cartilage explants, J. Bone Jt. Surg. Am., 2008, 90 (4), 833–848.
  10. Ciombor D., Aaron R., Wang S., Simon B., Modification of osteoarthritis by pulsed electromagnetic field: a morphological study, Osteoarthr. Cartil., 2003, 11 (6), 455–462.
  11. Elsayed Y., Lekakou C., Tomlins P., Modeling, simulations, and optimization of smooth muscle cell tissue engineering for the production of vascular grafts, Biotechnol. Bioeng., 2019, 116 (6), 1509–1522.
  12. Escobar J., Vaca-González J., Guevara J., Vega J., Hata Y., Garzón-Alvarado D., In Vitro Evaluation of the Effect of Stimulation with Magnetic Fields on Chondrocytes, Bioelectromagnetics, 2019, 41 (1), 41–51.
  13. Fini M., Giavaresi G., Carpi A., Nicolini A., Setti S., Giardino R., Effects of pulsed electromagnetic fields on articular hyaline cartilage: Review of experimental and clinical studies, Biomed. Pharmacother., 2005, 59 (7), 388–394.
  14. Fini M., Giavaresi G., Torricelli P., Cavani F., Setti S., Cane V., Giardino R., Pulsed electromagnetic fields reduce knee osteoarthritic lesion progression in the aged Dunkin Hartley guinea pig, J. Orthop. Res., 2005, 23 (4), 899–908.
  15. Fioravanti A., Nerucci F., Collodel G., Markoll R., Marcolongo R., Biochemical and morphological study of human articular chondrocytes cultivated in the presence of pulsed signal therapy, Ann. Rheum. Dis., 2002, 61 (11), 1032–1033.
  16. Freed L., Marquis J., Langer R., Vunjak-Novakovic G., Kinetics of chondrocyte growth in cell-polymer implants, Biotechnol. Bioeng., 1994, 43 (7), 597–604.
  17. Galban C., Locke B., Analysis of cell growth kinetics and substrate diffusion in a polymer scaffold, Biotechnol. Bioeng., 1999, 65 (2), 121–132.
  18. Garijo N., Manzano R., Osta R., Perez M.A., Stochastic cellular automata model of cell migration, proliferation and differentiation: Validation with in vitro cultures of muscle satellite cells, J. Theor. Biol., 2012, 314, 1–9.
  19. González-Valverde I., García-Aznar J., An agent-based and FE approach to simulate cell jamming and collective motion in epithelial layers, Comput. Part. Mech., 2019, 6 (1), 85–96.
  20. Goudar C., Joeris K., Konstantinov K., Piret J., Logistic Equations Effectively Model Mammalian Cell Batch and Fed-Batch Kinetics by Logically Constraining the Fit, Biotechnol. Prog., 2005, 21 (4), 1109–1118.
  21. Grote M., Palumberi V., Wagner B., Barbero A., Martin I., Dynamic formation of oriented patches in chondrocyte cell cultures, J. Math. Biol., 2011, 63 (4), 757–777.
  22. Jahns M., Lou E., Durdle N., Bagnall K., Raso V., Cinats D., Barley R., Cinats J., Jomha N., The effect of pulsed electromagnetic fields on chondrocyte morphology, Med. Biol. Eng. Comput., 2007, 45 (10), 917–925.
  23. Jarrett A., Lima E., Hormuth D., McKenna M., Feng X., Ekrut D., Resende A., Brock A., Yankeelov T., Mathematical models of tumor cell proliferation: A review of the literature, Expert Rev. Anticancer Ther., 2018, 18 (12), 1271–1286.
  24. Jin W., McCue S., Simpson M., Extended logistic growth model for heterogeneous populations, J. Theor. Biol., 2018, 445, 51–61.
  25. Jin W., Penington C., McCue S., Simpson M., Stochastic simulation tools and continuum models for describing twodimensional collective cell spreading with universal growth functions, Phys. Biol., 2016, 13 (5), 56003.
  26. Kerkhofs J., Leijten J., Bolander J., Luyten F., Post J., Geris L., A Qualitative Model of the Differentiation Network in Chondrocyte Maturation: A Holistic View of Chondrocyte Hypertrophy, PLoS One, 2016, 11 (8), 1–27.
  27. Kino-Oka M., Maeda Y., Yamamoto T., Sugawara K., Taya M., A kinetic modeling of chondrocyte culture for manufacture of tissue-engineered cartilage, J. Biosci. Bioeng., 2005, 99 (3), 197–207.
  28. van Liedekerke P., Quantitative modeling of cell and tissue mechanics withagent-based models, Inria Paris, Sorbonne Université, 2019.
  29. De Mattei M., Caruso A., Pezzetti F., Pellati A., Stabellini G., Sollazzo V., Traina G., Effects of pulsed electromagnetic fields on human articular chondrocyte proliferation, Connect Tissue Res., 2001, 42 (4), 269–279.
  30. De Mattei M., Pasello M., Pellati A., Stabellini G., Massari L., Gemmati D., Caruso A., Effects of electromagnetic fields on proteoglycan metabolism of bovine articular cartilage explants, Connect Tissue Res., 2003, 44 (3–4), 154–159.
  31. De Mattei M., Pellati A., Pasello M., Ongaro A., Setti S., Massari L., Gemmati D., Caruso A., Effects of physical stimulation with electromagnetic field and insulin growth factor-I treatment on proteoglycan synthesis of bovine articular cartilage, Osteoarthr. Cartil., 2004, 12 (10), 793–800.
  32. Mendenhall W., Sincich T., Principles of Model Building. In A second course in statistics regression analysis, Prentice Hall, Boston, MA, 2012, 261–325.
  33. Minas T., Ogura T., Bryant T., Autologous Chondrocyte Implantation, JBJS Essent. Surg. Tech., 2016, 6 (2), 1–11.
  34. Nicolakis P., Kollmitzer J., Crevenna R., Bittner C., Erdogmus C., Nicolakis J., Pulsed magnetic field therapy for osteoarthritis of the knee: a double-blind sham-controlled trial, Wien Klin. Wochenschr., 2002, 114 (15–16), 678–684.
  35. Nicolin V., Ponti C., Baldini G., Gibellini D., Bortul R., Zweyer M., Martinelli B., Narducci P., In vitro exposure of human chondrocytes to pulsed electromagnetic fields, Eur. J. Histochem., 2007, 51 (3), 203–212.
  36. Omar R., Abdullah M., Hasan M., Rosfarizan M., Marziah M., Kinetics and modelling of cell growth and substrate uptake inCentella asiatica cell culture, Biotechnol. Bioprocess Eng., 2006, 11 (3), 223–229.
  37. Ongaro A., Pellati A., Masieri F., Caruso A., Setti S., Cadossi R., Biscione R., Massari L., Fini M., De Mattei M., Chondroprotective effects of pulsed electromagnetic fields on human cartilage explants, Bioelectromagnetics, 2011, 32 (7), 543–551.
  38. Persson S., Wei H., Milne J., Page G., Somerville C., Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets, Proc. Natl. Acad. Sci. U.S.A., 2005, 102 (24), 8633–8638.
  39. Pipitone N., Scott D., Magnetic pulse treatment for knee osteoarthritis: a randomised, double-blind, placebo-controlled study, Curr. Med. Res. Opin., 2001, 17 (3), 190–196.
  40. Rodan G., Bourret L., Norton L., DNA synthesis in cartilage cells is stimulated by oscillating electric fields, Science (80-.). 1978, 199 (4329), 690–692.
  41. Sartori R., Leme J., Caricati C., Tonso A., Núñez E., Model comparison to describe bhk-21 cell growth and metabolism in stirred tank bioreactors operated in batch mode, Brazilian Journal of Chemical Engineering, 35, 441–458.
  42. Schmidt-Rohlfing B., Silny J., Woodruff S., Gavenis K., Effects of pulsed and sinusoid electromagnetic fields on human chondrocytes cultivated in a collagen matrix, Rheumatol. Int., 2008, 28 (10), 971–977.
  43. Sherley J., Stadler P., Stadler J., A quantitative method for the analysis of mammalian cell proliferation in culture in terms of dividing and non-dividing cells, Cell Prolif., 1995, 28 (3), 137–144.
  44. Shirsat N., Mohd A., Whelan J., English N., Glennon B., Al-Rubeai M., Revisiting Verhulst and Monod models: analysis of batch and fed-batch cultures. Cytotechnology, 2015, 67 (3), 515–530.
  45. Szasz N., Hung H., Sen S., Grodzinsky A., Electric field regulation of chondrocyte biosynthesis in agarose gel constructs, [in:] 49th Annual Meeting of the Orthopaedic Research Society, Orthopaedic Research Society, New Orleans, LA, 2003, 1.
  46. Trock D., Bollet A., Dyer Jr. R., Fielding L., Miner W., Markoll R., A double-blind trial of the clinical effects of pulsed electromagnetic fields in osteoarthritis, J. Rheumatol., 1993, 20 (3), 456–460.
  47. Trock D., Bollet A., Markoll R., The effect of pulsed electromagnetic fields in the treatment of osteoarthritis of the knee and cervical spine. Report of randomized, double blind, placebo controlled trials, J. Rheumatol., 1994, 21 (10), 1903–1911.
  48. Vaca-González J., Guevara J., Moncayo M., Castro-Abril H., Hata Y., Garzón-Alvarado D., Biophysical stimuli: a review of electrical and mechanical stimulation in hyaline cartilage, Cartilage, 2019, 10 (2), 157–172.
  49. Vaca-González J., Guevara J., Vega J., Garzón-Alvarado D., An In Vitro Chondrocyte Electrical Stimulation Framework: A Methodology to Calculate Electric Fields and Modulate Proliferation, Cell Death and Glycosaminoglycan Synthesis, Cell. Mol. Bioeng., 2016, 9 (1), 116–126.
  50. Vaca-González J., Gutiérrez M., Guevara J., Garzón-Alvarado D., Cellular automata model for human articular chondrocytes migration, proliferation and cell death: An in vitro validation, In: Silico Biol., 2017, 12 (3–4), 83–93.
  51. Velasquez A., Behavioral model of a basic trabecular-bone multi-cellular unit using cellular automaton, Visión Electrónica, 2014. 8 (1), 6–18.
  52. Wang W., Wang Z., Zhang G., Clark C., Brighton C., Up-regulation of chondrocyte matrix genes and products by electric fields, Clin. Orthop. Relat. Res., 2004, 427, 163–173.
  53. Warne D., Baker R., Simpson M., Optimal Quantification of Contact Inhibition in Cell Populations, Biophys. J., 2017, 113 (9), 1920–1924.
  54. Xu P., Analytical solution for a hybrid Logistic-Monod cell growth model in batch and continuous stirred tank reactor culture, Biotechnol. Bioeng., 2020, 117 (3), 873–878.
DOI: https://doi.org/10.37190/abb-01836-2021-03 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 109 - 124
Submitted on: Mar 29, 2021
|
Accepted on: Jul 22, 2021
|
Published on: Oct 26, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Juan Jairo Vaca-González, Juan Felipe Escobar, Diego Alexander Garzón-Alvarado, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.