References
- E
l -Rashidy A.A., Roether J.A., Harhaus L., Kneser U., Boccaccini A.R., Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models, Acta Biomater., 2017, Vol. 62, 1–28. - Z
hang L., Yang G., Johnson B., Jia X., Three-dimensional (3D) Printed Scaffold and Material Selection for Bone Repair, Acta Biomater., 2018, Vol. 84, 16–33. - C
hu W.X., Gan Y.K., Zhuang Y.F., Wang X., Zhao J., Tang T.T., Dai K.R., Mesenchymal stem cells and porous β-tricalcium phosphate composites prepared through stem cell screen-enrich-combine(−biomaterials) circulating system for the repair of critical size bone defects in goat tibia, Stem. Cell. Res. Ther., 2018, Vol. 9, 157. - X
iong Y.Z., Gao R.N., Zhang H., Dong L.L., Li J.T., Li X., Rationally designed functionally graded porous Ti6Al4V scaffolds with high strength and toughness built via selective laser melting for load-bearing orthopedic applications, J. Mech. Behav. Biomed. Mater., 2020, Vol. 104, 103673. - G
ao H.-Y., Li Y.-L., Xiao Y., Li L.-T., Wang G.-L., Comparison of physicochemical properties of five kinds of cancellous bones, Chinese J. Tissue Eng. Res., Jan. 2016, Vol. 20, 6237–6243. - T
orres A., Matheny J., Keaveny T., Taylor D., Rimnac C., Hernandez C., Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure, Proc. Natl. Acad. Sci., Fe. 2016, Vol. 113, 201520539. - M
urr L., Open-cellular metal implant design and fabrication for biomechanical compatibility with bone using electron beam melting, J. Mech. Behav. Biomed. Mater., Feb. 2017, Vol. 76, 164–177. - M
artin J., Watts C., Levy D., Miner T., Springer B., Kim R., Tibial Tray Thickness Significantly Increases Medial Tibial Bone Resorption in Cobalt-Chromium Total Knee Arthroplasty Implants, J. Arthroplasty, Jun. 2017, Vol. 32 (1), 79–82. - L
i X., Chu C.L., Zhou L., Bai J., Guo C., Xue F., Lin P.H., Chu P., Fully degradable PLA-based composite reinforced with 2D-braided Mg wires for orthopedic implants, Compos. Sci. Technol., Feb. 2017, Vol. 142, 180–188. - S
priano S., Yamaguchi S., Baino F., Ferraris S., A critical review of multifunctional titanium surfaces: New frontiers for improving osseointegration and host response, avoiding bacteria contamination, Acta Biomater., 2018, Vol. 79, 1–22. - L
i J., Yuan H., Chandrakar A., Moroni L., Habibovic P., 3D porous Ti6Al4V-beta-tricalcium phosphate scaffolds directly fabricated by additive manufacturing, Acta Biomater., 2021, Vol. 126, 496–510. - Č
apek J., Pinc J., Msallamová Š., Jablonska E., Veřtát P., Kubásek J., Vojtěch D., Correction to: Thermal Plasma Spraying as a New Approach for Preparation of Zinc Biodegradable Scaffolds: A Complex Material Characterization, J. Therm. Spray Technol., Oct. 2019, Vol. 28, 1. - Z
hao Q., Zhou Y., Wang M., Three-dimensional Endothelial Cell Incorporation within Bioactive Nanofibrous Scaffolds through Concurrent Emulsion Electrospinning and Coaxial Cell Electrospraying, Acta Biomater., Jan. 2021, Vol. 123, 312–324. - K
elly C., Francovich J., Julmi S., Safranski D., Guldberg R., Maier H., Gall K., Fatigue Behavior of As-Built Selective Laser Melted Titanium Scaffolds with Sheet-based Gyroid Microarchitecture for Bone Tissue Engineering, Acta Biomater., 2019, Vol. 94, 610–626. - C
hang J.-M., Liu G.-L., Tung H.-M., Effects of Sintering Temperature on the Porosity and Mechanical Behavior of Porous Titanium Scaffolds Prepared by Freeze-Casting, J. Mater. Eng. Perform., Sep. 2019, Vol. 28, 5494–5500. - G
leadall A., Visscher D., Yang J., Thomas -Vazquez D., Segal J., Review of additive manufactured tissue engineering scaffolds: relationship between geometry and performance, Burn. Trauma, Dec. 2018, Vol. 6, 19. - A
rabi N., Zamanian A., Rashvand S., Ghorbani F., The Tunable Porous Structure of Gelatin-Bioglass Nanocomposite Scaffolds for Bone Tissue Engineering Applications: Physicochemical, Mechanical, and In Vitro Properties, Macromol. Mater. Eng., 2018, Vol. 303, 1700539. - B
arabás R., Tissue Integration and Biological Cellular Response of SLM-Manufactured Titanium Scaffolds, Metals (Basel)., Sep. 2020, Vol. 10 (9), 1192. - Z
hang K., Fan Y., Dunne N., Li X., Effect of microporosity on scaffolds for bone tissue engineering, Regen. Biomater., Feb. 2018, Vol. 5 (2), 115–124. - R
apillard L., Charlebois M., Zysset P., Compressive fatigue behavior of human vertebral trabecular bone, J. Biomech., Feb. 2006, Vol. 39, 2133–2139. - Z
ioupos P., Gresle M., Winwood K., Fatigue strength of human cortical bone: age, physical, and material heterogeneity effects, J. Biomed. Mater. Res. A, Sep. 2008, Vol. 86, 627–636. - L
ambers F., Bouman A., Rimnac C., Hernandez C., Microdamage Caused by Fatigue Loading in Human Cancellous Bone: Relationship to Reductions in Bone Biomechanical Performance, PLoS One, Dec. 2013, Vol. 8, e83662. - A
min Yavari S., Wauthle R., Van der Stok J., Riemslag A.C., Janssen M., Mulier M., Kruth J., Schrooten J., Weinans H., Zadpoor A., Fatigue behavior of porous biomaterials manufactured using selective laser melting, Mater. Sci. Eng. C, Dec. 2013, Vol. 33, 4849–4858. - A
l -Saedi D., Masood S., Faizan -Ur -Rab M., Alomarah A., Ponnusamy P., Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM, Mater. Des., Jan. 2018, Vol. 144, 32–44. - X
iong Y.Z., Wang W., Gao R.N., Zhang H., Dong L.L., Qin J.W., Wang B.B., Jia W.T., Li X., Fatigue behavior and osseointegration of porous Ti-6Al-4V scaffolds with dense core for dental application, Mater. Des., 2020, Vol. 195, 108994. - L
iu Y.J., Ren D.C., Li S.J., Wang H., Zhang L.C., Sercombe T.B., Enhanced fatigue characteristics of a topology-optimized porous titanium structure produced by selective laser melting, Addit. Manuf., 2020, Vol. 32, 101060. - Z
hao S., Li S.J., Hou W.T., Hao Y.L., Yang R., Misra R.D.K., The influence of cell morphology on the compressive fatigue behavior of Ti-6Al-4V meshes fabricated by electron beam melting, J. Mech. Behav. Biomed. Mater., 2016, Vol. 59, 251–264. - A
sik E., Tunca B., Selimoğlu G.İ., Bor Ş., Fatigue Behavior of 51 Vol.% Porous Ti-6Al-4V Alloy, Mater. Sci. Forum, May 2014, Vol. 783–786, 1221–1225.