Have a personal or library account? Click to login
Augmented reality visualization for aiding biopsy procedure according to computed tomography based virtual plan Cover

Augmented reality visualization for aiding biopsy procedure according to computed tomography based virtual plan

Open Access
|May 2021

References

  1. Andrews C.M., Henry A.B., Soriano I.M., Southworth M.K., Silva J.R., Registration Techniques for Clinical Applications of Three-Dimensional Augmented Reality Devices, IEEE Journal of Translational Engineering in Health and Medicine, 2020, 9, DOI: https://doi.org/10.1109/JTEHM.2020.3045642.
  2. Badiali G., Cutolo F., Cercenelli L., M. Carbone M., D’Amato R., Ferrari V., Marchetti C., The VOSTARS project: A new wearable hybrid video and optical see-through augmented reality surgical system for maxillofacial surgery, Int. J. Maxillofacial Surg., 2019, 48, DOI: https://doi.org/10.1016/j.ijom.2019.03.472.
  3. Badiali G. et al., Review on Augmented Reality in Oral and Cranio-Maxillofacial Surgery: Toward “Surgery-Specific” Head-Up Displays, IEEE Access, 2020, 8, 59015–59028, DOI: 10.1109/ACCESS.2020.2973298.
  4. Bosc R., Fitoussi A., Hersant B., Dao T.H., Meningaud J.P, Intraoperative augmented reality with heads-up displays in maxillofacial surgery: A systematic review of the literature and a classification of relevant technologies, Int. J. Oral Maxillofacial Surg., 2019, 48 (1), 132–139, DOI: 10.1016/j.ijom.2018.09.010.
  5. Carse B., Meadows B., Bowers R., Rowe P., Affordable clinical gait analysis: An assessment of the marker tracking accuracy of a new low-cost optical 3d motion analysis system, Physiotherapy, 2013, 99 (4), 347–351.
  6. Chen X., Xu L., Wang Y., Wang H., Wang F., Zeng X., Wang Q., Egger J., Development of a surgical navigation system based on augmented reality using an optical see-through headmounted display, Journal of Biomedical Informatics, 2015, 55, DOI: https://doi.org/10.1016/j.jbi.2015.04.003.
  7. Cutolo F. et al., Ambiguity-Free Optical–Inertial Tracking for Augmented Reality Headsets, Sensors, 2020, 20 (5), DOI: 10.3390/s20051444.
  8. De Amici S., Sanna A., Lamberti F., Pralio B., A wii remote-based infrared-optical tracking system, Entertainment Computing, 2010, 1 (3–4), 119.
  9. Garrido-Jurado S., Munoz-Salinas R., Madrid-Cuevas F., Marin-Jimenez M., Automatic generation and detection of highly reliable fiducial markers under occlusion, Pattern Recognition, 2014, 47 (6), 2280–2292.
  10. García-Vázquez V., Von Haxthausen F., Jäckle S., Schumann C., Kuhlemann I., Bouchagiar J., Höfer A.C., Matysiak F., Hüttmann G., Goltz J.P., Kleemann M., Ernst F., Horn M., Navigation and visualization with Holo-Lens in endovascular aortic repair, Innov. Surg. Sci., 2018, 3 (3), 167–177, DOI: 10.1515/iss-2018-2001.
  11. Gil J.J., Díaz I., Accini F., Inferring material properties in robotic bone drilling processes, Acta Bioeng. Biomech., 2019, 21 (3), 109–118, DOI: 10.5277/ABB-01386-2019-02.
  12. Grubert J., Itoh Y., Moser K., Swan J.E., A Survey of Calibration Methods for Optical See-Through Head-Mounted Displays, IEEE Transactions on Visualization and Computer Graphics, 2018, 24 (9), 2649–2662, DOI: 10.1109/TVCG.2017.2754257.
  13. Itoh Y., Klinker G., Interaction-free calibration for optical seethrough head-mounted displays based on 3D eye localization, Proc. IEEE Symp. 3D User Interfaces, 2014, 75–82.
  14. Kunz C., Genten V., Meißner P., Hein B., Metric-based evaluation of fiducial markers for medical procedures, Proc. SPIE 10951, Medical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling, 109512O, 2019, DOI: https://doi.org/10.1117/12.2511720.
  15. Lin M.A., Siu A.F., Bae J.H., Cutkosky M.R., Daniel B.L., HoloNeedle: Augmented reality guidance system for needle placement investigating the advantages of three-dimensional needle shape reconstruction, IEEE Robot. Autom. Lett., 2018, 3 (4), 4156–4162, DOI: 10.1109/LRA.2018.2863381
  16. Majak M., Żuk M., Świątek-Najwer E., Popek M., Pietruski P., Biopsy procedure applied in MentorEye molecular surgical navigation system, Lecture Notes in Computational Vision and Biomechanics, 2018, 27, 338–344.
  17. Makibuchi N., Kato H., Yoneyama A., Vision-based robust calibration for optical see-through head-mounted displays, Proc. IEEE Int. Conf. Image Process., 2013, 2177–2181.
  18. Mcknight R.R., Pean C.A., Buck J.S. et al., Virtual Reality and Augmented Reality – Translating Surgical Training into Surgical Technique, Curr. Rev. Musculoskelet. Med., 2020, 13, 663–674, https://doi.org/10.1007/s12178-020-09667-3
  19. De Oliveira M.E., Debarba H.G., Lädermann A., Chagué S., Charbonnier C., A hand-eye calibration method for augmented reality applied to computer-assisted orthopedic surgery, Int. J. Med. Robot., 2019, 15 (2), DOI: 10.1002/rcs.1969.
  20. Pietruski P., Majak M., Świątek-Najwer E., Żuk M., Popek M., Mazurek M., Świecka M., Jaworowski J., Navigation-guided fibula free flap for mandibular reconstruction: A proof of concept study, Journal of Plastic, Reconstructive and Aesthetic Surgery, 2019, 72 (4), DOI: 10.1016/j.bjps.2019.01.026.
  21. Pietruski P., Majak M., Świątek-Najwer E., Żuk M., Popek M., Jaworowski J., Mazurek M., Supporting fibula free flap harvest with augmented reality: A proof-of-concept study, The Laryngoscope, 2019, 130 (5), 1173–1179, https://doi.org/10.1002/lary.28090
  22. Pietruski P. et. al., Supporting mandibular resection with intraoperative navigation utilizing augmented reality technology – A proof of concept study, Journal of Cranio-Maxillofacial Surgery, 2019, 47 (6), DOI: https://doi.org/10.1016/j.jcms.2019.03.004.
  23. Qian L., Barthel A., Johnson A., Osgood G., Kazanzides P., Navab N., Fuerst B., Comparison of optical see-through head-mounted displays for surgical interventions with objectanchored 2D-display, Int. J. Comput. Assist. Radiol. Surg., 2017, 12 (6), DOI: 10.1007/s11548-017-1564-y.
  24. Rahman R., Wood M.E., Qian L., Price C.L., Johnson A.A., Osgood G.M., Head-Mounted Display Use in Surgery: A Systematic Review, Surgical Innovation, 2020, 27 (1), 88–100, DOI: 10.1177/1553350619871787.
  25. Sakai D., Joyce K., Sugimoto M. et al., Augmented, virtual and mixed reality in spinal surgery: A real-world experience, Journal of Orthopaedic Surgery, 2020, DOI: 10.1177/2309499020952698.
  26. Tuceryan M., Genc Y., Navab N., Single-Point Active Alignment Method (SPAAM) for Optical See-Through HMD Calibration for Augmented Reality, Teleoperators and Virtual Environments, 2002, 11, 259–276.
  27. Wacker F.K., Vogt S.K., Khamene A., Jesberger J.A., Nour S.G., Elgort D.R., Sauer F., Duerk J.L., Lewin J.S., An augmented reality system for MR image-guided needle biopsy: initial results in a swine model, Radiology, 2006, 238 (2), 497–504.
  28. Wang H., Wang F., Xu L., Chen X., Wang Q., Precision insertion of percutaneous sacroiliac screws using a novel augmented reality-based navigation system: a pilot study, International Orthopaedics, 2016, 40, 1941–1947.
  29. Wang J., Shen Y., Yang S., A practical marker-less image registration method for augmented reality oral and maxillofacial surgery, Int. J. Comput. Assist. Radiol. Surg., 2019, 14 (5), 763–773, DOI: 10.1007/s11548-019-01921-5.
  30. Żuk M., Majak M., Świątek-Najwer E., Popek M., Kulas Z., Evaluation of calibration procedure for stereoscopic visualization using optical See-Through Head Mounted Displays for a complex oncological treatment, Lecture Notes in Computational Vision and Biomechanics, 2018, 27, 354–359.
DOI: https://doi.org/10.37190/abb-01811-2021-02 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 81 - 89
Submitted on: Jan 23, 2021
Accepted on: Mar 29, 2021
Published on: May 2, 2021
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Marcin Majak, Magdalena Żuk, Ewelina Świątek-Najwer, Michał Popek, Piotr Pietruski, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.