References
- A
mado A., Schmid M., Levy G., Wegener K., Advances in SLS powder characterization, 22nd Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, SFF 2011, 2011, 438–452. - B
ayraktar H.H., Morgan E.F., Niebur G.L., Morris G.E., Wong E.K., Keaveny T.M., Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue, J. Biomech., 2004, 37 (1), 27–35. - B
erretta S., Ghita O., Evans K.E., Anderson A., Newman C., Size, shape and flow of powders for use in Selective Laser Sintering (SLS), High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping, Proceedings of the 6th International Conference on Advanced Research and Rapid Prototyping, VR@P 2013, 2014, 49–54. - B
rown P.W., Constantz B., Hydroxyapatite and Related Materials, Taylor & Francis Group, Boca Raton: CRC Press, 1994. - B
runski J.B., 36. Influence of Biomechanical Factors at the Bone-Biomaterial Interface, Bone-Bio Material Interface, University of Toronto Press, 2016. - D
ias G.J., Mahoney P., Swain M., Kelly R.J., Smith R.A., Ali M.A., Keratin-hydroxyapatite composites: Biocompatibility, osseointegration, and physical properties in an ovine model, J. Biomed. Mater. Res., 2010, 95A (4), 1084–1095. - D
orozhkin S.V., Calcium orthophosphates: occurrence, properties, biomineralization, pathological calcification and biomimetic applications, Biomatter, 2011, 1 (2), 121–164. - D
uda A., Penczek S., Polilaktyd [poli(kwas mlekowy)]: synteza, właściwości i zastosowania, Polimery, 2003, T. 48, nr 116–127. - G
alli S., Jimbo R., Tovar N., Yoo D.Y., Anchieta R.B., Yamaguchi S., Coelho P.G., The effect of osteotomy dimension on osseointegration to resorbable media-treated implants: A study in the sheep, J. Biomater. Appl., 2015, 29 (8), 1068–1074. - L
e Guéhennec L., Soueidan A., Layrolle P., Amouriq Y., Surface treatments of titanium dental implants for rapid osseointegration, Dent. Mater., 2007, 23 (7), 844–854. - H
ayashi H., Uchida A., Hamada H., Yoshikawa H., Shinto Y., Ono K., Alumina ceramic prostheses for bone tumor surgery, Arch. Orthop. Trauma Surg., 1992, 112 (1), 1–4. - H
oeges S., Lindner M., Fischer H., Meiners W., Wissenbach K., Manufacturing of bone substitute implants using selective laser melting, IFMBE Proceedings, 2008, 2230–2234. - K
obielarz M., Gazińska M., Tomanik M., Stępak B., Szustakiewicz K., Filipiak J., Antończak A., Pezowicz C., Physicochemical and mechanical properties of CO2 lasermodified biodegradable polymers for medical applications, Polym. Degrad. Stabil., 2019, 165182–195. - M
ao Y., Dong Y., Lin P., Chu C., Sheng X., Guo C., Preparation of poly(l-lactic acid) microspheres by droplet-freezing process, Mater. Sci. Eng. C, 2011, 31 (1), 9–13. - M
c Manus A.J., Doremus R.H., Siegel R.W., Bizios R., Evaluation of cytocompatibility and bending modulus of nanoceramic/polymer composites, J. Biomed. Mater. Res., 2005, 72A (1), 98–106. - P
ielichowska K., Blazewicz S., Bioactive Polymer/Hydroxyapatite (Nano)composites for Bone Tissue Regeneration, [in:] A. Abe, K. Dusek, S. Kobayashi (Eds.), Biopolymers: Lignin, Proteins, Bioactive Nanocomposites, Springer, Berlin, Heidelberg 2010, 97–207. - R
ussias J., Saiz E., Nalla R.K., Tomsia A.P., Microspheres as building blocks for hydroxyapatite/polylactide biodegradable composites, J. Mater. Sci., 2006, 5127–5133. - S
autier J., Nefussi J., Forest N., Ultrastructural Study of Bone Formation on Synthetic Hydroxyapatite in Osteoblast Cultures, Cell. Mater., 1991, 1 (3), 209–2017. - S
chmid M., Amado A., Wegener K., Polymer powders for selective laser sintering (SLS), AIP Conference Proceedings, 2015, 160009. - S
chwarz M.L.R., Kowarsch M., Rose S., Becker K., Lenz T., Jani L., Effect of surface roughness, porosity, and a resorbable calcium phosphate coating on osseointegration of titanium in a minipig model, J. Biomed. Mater. Res. A, 2009, 89A (3), 667–678. - S
hin D.Y., Kang M.H., Kang I.G., Kim H.E., Jeong S.H., In vitro and in vivo evaluation of polylactic acid-based composite with tricalcium phosphate microsphere for enhanced biodegradability and osseointegration, J. Biomater. Appl., 2018, 32 (10), 1360–1370. - S
zymczyk P., Junka A., Ziółkowski G., Smutnicka D., Bartoszewicz M., Chlebus E., The ability of S. aureus to form biofilm on the Ti-6Al-7Nb scaffolds produced by Selective Laser Melting and subjected to the different types of surface modifications, Acta Bioeng. Biomech., 2013, 15 (1), 69–76. - T
aylor T.D., Prosthodontic problems and limitations associated with osseointegration, J. Prosthet. Dent., 1998, 79 (1), 74–78. - T
cacencu I., Rodrigues N., Alharbi N., Benning M., Toumpaniari S., Mancuso E., Marshall M., Bretcanu O., Birch M., Mc Caskie A., Dalgarno K., Osseointegration of porous apatite-wollastonite and poly(lactic acid) composite structures created using 3D printing techniques, Mater. Sci. Eng. C, 2018, 901–907. - U
rbański W., Krawczyk A., Dragan S.Ł., Kule M., Dragan S.F., Influence of cementless cup surface on stability and bone fixation 2 years after total hip arthroplasty, Acta Bioeng. Bimech., 2012, 14 (2), 27–35. - W
ebster T.J., Ergun C., Doremus R.H., Siegel R.W., Bizios R., Enhanced functions of osteoblasts on nanophase ceramics, Biomaterials, 2000, 21 (17), 1803–1810. - W
enisch S., Stahl J.-P.P., Horas U., Heiss C., Kilian O., Trinkaus K., Hild A., Schnettler R., In vivo mechanisms of hydroxyapatite ceramic degradation by osteoclasts: Fine structural microscopy, J. Biomed. Mater. Res. A, 2003, (3), 713–718. - W
oźna A.E., Junka A.F., Szymczyk P.E., The influence of different composite mixtures (PLA/HA) manufactured with additive laser technology on the ability of S. aureus and P. aeruginosa to form biofilms, Acta Bioeng. Biomech., 2018, 20 (3), 101–106. - Y
an D., Zeng B., Han Y., Dai H., Liu J., Sun Y., Li F., Preparation and laser powder bed fusion of composite microspheres consisting of poly(lactic acid) and nanohydroxyapatite, Addit. Manuf., 2020, 34101305. - Y
ang Y., Cheng Y., Peng S., Xu L., He C., Qi F., Zhao M., Shuai C., Microstructure evolution and texture tailoring of reduced graphene oxide reinforced Zn scaffold, Bioact. Mater., 2021, 6 (5), 1230–1241.