Have a personal or library account? Click to login
Study on friction behavior at the interface between prosthetic socket and liner Cover

Study on friction behavior at the interface between prosthetic socket and liner

By: Jingyang Xie,  Xidong Liu,  Jianhua Tang,  Xi Li and  Wei Li  
Open Access
|Mar 2021

References

  1. Baars E.C.T., Geertzen J.H., Literature review of the possible advantages of silicon liner socket use in transtibial prostheses, Prosthetics and Orthotics International, 2005, 29 (1), 27–37.
  2. Bourell D., Montgomery J.T., Vaughan M.R., Crawford R.H., Design of an actively actuated prosthetic socket, Rapid Prototyping Journal, 2010, 16 (3), 194–201.
  3. Cagle J.C., Reinhall P.G., Allyn K.J., McLean J., Hinrichs P., Hafner B.J., Sanders J.E., A finite element model to assess transtibial prosthetic sockets with elastomeric liners, Medical and Biological Engineering and Computing, 2018, 56, 1227–1240.
  4. Cavaco A., Durães L., Pais S., Ramalho A., Friction of prosthetic interfaces used by transtibial amputees, Biotribology, 2016, 6, 36–41.
  5. Emrich R., Slater K., Comparative analysis of below-knee prosthetic socket liner materials, Journal of Medical Engineering and Technology, 1998, 22 (2), 94–98.
  6. Feng Q.P., Li W., Liu X.D., Ji W., Zhou Z.R., Investigation of reciprocating friction characteristics between different bionic surfaces of prosthesis materials and skin, Biosurface and Biotribology, 2019, 5 (2), 57–66.
  7. Florence M.M., Andrew J.C., Joshua W.S., Dickinson A.S., Predictive control for an active prosthetic socket informed by FEA-based tissue damage risk estimation, 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019.
  8. Jia X.H., Zhang M., Li X.B., Lee W.C.C., A quasi-dynamic nonlinear finite element model to investigate prosthetic interface stresses during walking for trans-tibial amputees, Clinical Biomechanics, 2005, 20, 630–635.
  9. Kejlaa G.H., Consumer concerns and the functional value of prostheses to upper limb amputees, Prosthetics and Orthotics International, 2009, 17 (3), 157–163.
  10. Kong M., Li W., Li H.L., Liu X.D., Zhou Z.R., The skin frictional properties of 4 kinds of commonly used prosthetic materials, Journal of Biomedical Engineering, 2008, 25 (5), 1107–1111, 1125.
  11. Lee W.C.C., Zhang M., Jia X.H., Cheunga J.T.M., Finite element modeling of the contact interface between transtibial residual limb and prosthetic socket, Medical Engineering and Physics, 2004, 26 (8), 655–662.
  12. Li W., Kong M., Liu X.D., Zhou Z.R., Tribological behavior of scar skin and prosthetic skin in vivo, Tribology International, 2008, 41 (7), 640–647.
  13. Li W., Liu X.D., Cai Z.B., Zheng J., Zhou Z.R., Effect of prosthetic socks on the frictional properties of residual limb skin, Wear, 2011, 271 (11–12), 2804–2811.
  14. Li W., Qu S.X., Zhou Z.R., Reciprocating sliding behaviour of human skinin vivoat lower number of cycles, Tribology Letters, 2006, 23 (2), 165–170.
  15. Li W., Shi L., Deng H.Y., Zhou Z.R., Investigation on friction trauma of small intestine in vivo under reciprocal sliding conditions, Tribology Letters, 2014, 55 (2), 261–270.
  16. Lin C.C., Chang C.H., Wu C.L., Chung K.C., Liao I.C., Effects of liner stiffness for trans-tibial prosthesis: a finite element contact model, 2004, 26 (1), 1–9.
  17. Millstein S.G., Heger H., Hunter G.A., Prosthetic use in adult upper limb amputees: A comparison of the body powered and electrically powered prostheses, Prosthetics and Orthotics International, 2009, 10 (1), 27–34.
  18. Omasta M., David P., Návrat T., Rosický J., Finite element analysis for the evaluation of the structural behaviour, of a prosthesis for trans-tibial amputees, Medical Engineering and Physics, 2012, 34 (1), 38–45.
  19. Pohjolainen T., Alaranta H., Kärkkäinen M., Prosthetic use and functional and social outcome following major lower limb amputation, Prosthetics and Orthotics International, 1990, 14 (2), 75–79.
  20. Wang A., Lin R., Stark C., Dumbleton J.H., Suitability and limitations of carbon fiber reinforced PEEK composites as bearing surfaces for total joint replacements, Wear, 1999, 225–229 (4), 724–727.
  21. Zhang M., Lord M., Turner-Smith A.R., Roberts V.C., Development of a non-linear finite element modelling of the below-knee prosthetic socket interface, Medical Engineering & Physics, 1995, 17 (8), 559–566.
  22. Zhang M., Roberts C., Comparison of computational analysis with clinical measurement of stresses on below-knee residual limb in a prosthetic socket, Medical Engineering and Physics, 2000, 22 (9), 607–612.
  23. Zhang M., Turner-Smith A.R., Roberts V.C., Tanner A., Frictional action at lower limb/prosthetic socket interface, Medical Engineering & Physics, 1996, 18 (3), 207–214.
  24. Zhao G., Hussainova I., Antonov M., Wang Q.H., Wang T.M., Friction and wear of fiber reinforced polyimide composites, Wear, 2013, 301 (1–2), 122–129.
  25. Zheng S.X., Zhao W., Lu B., Three dimensional finite dynamic analysis of the residual limb and prosthetic socket, Journal of Xi’an Jiaotong University, 2006, 40 (7), 807.
DOI: https://doi.org/10.37190/abb-01751-2020-04 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 83 - 93
Submitted on: Nov 10, 2020
|
Accepted on: Jan 5, 2021
|
Published on: Mar 10, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Jingyang Xie, Xidong Liu, Jianhua Tang, Xi Li, Wei Li, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.