References
- C
hen H., Brayman A.A., Bailey M.R., Matula T.J., Blood vessel rupture by cavitation, Urol. Res., 2010, 38 (4), 321–326, DOI: 10.1007/s00240-010-0302-5. - C
hen H., Kreider W., Brayman A.A., Bailey M.R., Matula T.J., Blood vessel deformations on microsecond time scales by ultrasonic cavitation, Phys. Rev. Lett., 2011, 106 (3), 034301, DOI: 10.1103/PhysRevLett.106.034301. - C
hoi J.J., Feshitan J.A., Baseri B., Wang S., Tung Y.S., Borden M.A., Konofagou E.E., Microbubble-size dependence of focused ultrasound-induced blood-brain barrier opening in mice in vivo, IEEE. Trans. Biomed. Eng., 2010, 57 (1), 145–154, DOI: 10.1109/TBME.2009.2034533. - F
an Z., Kumon R.E., Deng C.X., Mechanisms of microbubble- facilitated sonoporation for drug and gene delivery, Ther. Deliv., 2014, 5 (4), 467–486, DOI: 10.4155/tde.14.10. - G
uo X., Cai C., Xu G., Yang Y., Tu J., Huang P., Zhang D., Interaction between cavitation microbubble and cell: A simulation of sonoporation using boundary element method (BEM), Ultrason. Sonochem., 2017, 39, 863–871, DOI: 10.1016/j.ultsonch.2017.06.016. - H
elfield B., Chen X., Watkins S.C., Villanueva R.S., Biophysical insight into mechanisms of sonoporation, Proc. Natl. Acad. Sci., 2016, 113 (36), 9983–9988, DOI: 10.1073/pnas.1606915113. - H
osseinkhah N., Chen H., Matula T.J., Burns P.N., Hynynen K., Mechanisms of microbubble-vessel interactions and induced stresses: a numerical study, J. Acoust. Soc. Am., 2013, 134 (3), 1875–1885, DOI: 10.1121/1.4817843. - H
u J.W., Qian S.Y., Sun J.N., Lü Y.B., Hu P., Microflowinduced shear stress on biomaterial wall by ultrasoundinduced encapsulated microbubble oscillation, Chin. Phys. B., 2015, 24 (9), 094301–094306, DOI: 10.1088/1674-1056/24/9/094301. - K
lotz A.R., Hynynen K., Simulations of the Devin and Zudin modified Rayleigh-Plesset equations to model bubble dynamics in a tube, Technical Acoustics., 2010, 30 (6). - K
obielarz M., Effect of collagen fibres and elastic lamellae content on the mechanical behaviour of abdominal aortic aneurysms, Acta Bioeng. Biomech., 2020, 22 (3), 69–74, DOI: 10.37190/ABB-01580-2020-02. - K
oshiyama K., Wada S., Molecular dynamics simulations of pore formation dynamics during the rupture process of a phospholipid bilayer caused by high-speed equibiaxial stretching, J. Biomech. 2011, 44(11), 2053–2058, DOI: 10.1016/j.jbiomech.2011.05.014. - K
rasovitski B., Kimmel E., Shear stress induced by a gas bubble pulsating in an ultrasonic field near a wall, IEEE Trans. Ultrason. Ferroelectr. Freq. Control., 2004, 51 (8), 973–979, DOI: 10.1109/TUFFC.2004.1324401. - L
i W., Yuan T., Xia -Sheng G., Di X., Dong Z., Microstreaming velocity field and shear stress created by an oscillating encapsulated microbubble near a cell membrane, Chin. Phys. B., 2014, 23, 124302, DOI: 10.1088/1674-1056/23/12/124302. - L
in S.J., Jan K.M., Weinbaum S., Chien S., Transendothelial transport of low density lipoprotein in association with cell mitosis in rat aorta, Arteriosclerosis, 1989, 9 (2), 230–236, DOI: 10.1161/01.ATV.9.2.230. - M
an V.H., Truong P.M., Li M.S., Wang J., Van -Oanh N.T., Derreumaux P., Nguyen P.H., Molecular Mechanism of the Cell Membrane Pore Formation Induced by Bubble Stable Cavitation, J. Phys. Chem. B., 2019, 123 (1), 71–78, DOI: 10.1021/acs.jpcb.8b09391. - M
iao H., Gracewski S.M., Dalecki D., Ultrasonic excitation of a bubble inside a deformable tube: implications for ultrasonically induced hemorrhage, J. Acoust. Soc. Am., 2008, 124 (4), 2374–2384, DOI: 10.1121/1.2967488. - M
iller D.L., Quddus J., Diagnostic ultrasound activation of contrast agent gas bodies induces capillary rupture in mice, Proc. Natl. Acad. Sci. U.S.A., 2000, 97 (18), 10179–10184, DOI: 10.7863/jum.2002.21.12.1435. - M
iller M.W., Cell size relations for sonolysis, Ultrasound. Med. Biol., 2004, 30 (10), 1263–1267, DOI: 10.1016/j.ultrasmedbio.2004.07.005. - O
lgac U., Kurtcuoglu V., Poulikakos D., Computational modeling of coupled blood-wall mass transport of LDL: effects of local wall shear stress, Am. J. Physiol. Heart. Circ. Physiol., 2008, 294 (2), H909–919, DOI: 10.1152/ajpheart.01082.2007. - P
ereno V., Lei J., Carugo D., Stride E., Microstreaming inside Model Cells Induced by Ultrasound and Microbubbles, 2020, 36 (23), 6388–6398, DOI: 10.1021/acs.langmuir.0c00536. - Q
in S., Ferrara K.W., The natural frequency of nonlinear oscillation of ultrasound contrast agents in microvessels, Ultrasound Med. Biol., 2007, 33 (7), 1140–1148, DOI: 10.1016/j.ultrasmedbio.2006.12.009. - R
amiar A., Larimi M.M., Ranjbar A.A., Investigation of blood flow rheology using Second-Grade viscoelastic model (Phan– Thien–Tanner) within carotid artery, Acta Bioeng. Biomech., 2017, 19 (3), 27–14. DOI: 10.5277//ABB-00775-2016-05. - R
owe A.J., Finlay H.M., Canham P.B., Collagen biomechanics in cerebral arteries and bifurcations assessed by polarizing microscopy, J. Vasc. Res., 2003, 40 (4), 406–415, DOI: 10.1159/000072831. - S
assaroli E., Hynynen K., Resonance frequency of microbubbles in small blood vessels: a numerical study, Phys. Med. Biol., 2005, 50 (22), 5293–5305, DOI: 10.1088/0031-9155/50/22/006. - S
ierra C., Acosta C., Chen C., Wu S.Y., Karakatsani M.E., Bernal M., Konofagou E.E., Lipid microbubbles as a vehicle for targeted drug delivery using focused ultrasound-induced blood-brain barrier opening, J. Cereb. Blood. Flow. Metab., 2017, 37 (4), 1236–1250, DOI: 10.1177/0271678X16652630. - S
nowhill P.B., Silver F.H., A Mechanical Model of Porcine Vascular Tissues-Part II: Stress-Strain and Mechanical Properties of Juvenile Porcine Blood Vessels, Cardiovascular Engineering, 2005, 5 (4), 157–169, DOI: 10.1007/s10558-005-9070-1. - S
tieger S.M., Caskey C.F., Adamson R.H., Qin S., Curry F.R., Wisner E.R., Ferrara K.W., Enhancement of vascular permeability with low-frequency contrast-enhanced ultrasound in the chorioallantoic membrane model, Radiology, 2007, 243 (1), 112–121, DOI: 10.1148/radiol.2431060167. - W
u J., Theoretical study on shear stress generated by microstreaming surrounding contrast agents attached to living cells, Ultrasound. Med. Biol., 2002, 28 (1), 125–129, DOI: 10.1016/S0301-5629(01)00497-5. - Y
e T., Bull J.L. Microbubble expansion in a flexible tube, J. Biomech. Eng., 2006, 128 (4), 554–563, DOI: 10.1115/1.2206200. - Y
u H., Chen S., A model to calculate microstreaming-shear stress generated by oscillating microbubbles on the cell membrane in sonoporation, Biomed. Mater. Eng., 2014, 24 (1), 861–868, DOI: 10.3233/BME-130878.