Have a personal or library account? Click to login
Numerical analysis of the biomechanical effects on micro-vessels by ultrasound-driven cavitation Cover

Numerical analysis of the biomechanical effects on micro-vessels by ultrasound-driven cavitation

Open Access
|Mar 2021

References

  1. Chen H., Brayman A.A., Bailey M.R., Matula T.J., Blood vessel rupture by cavitation, Urol. Res., 2010, 38 (4), 321–326, DOI: 10.1007/s00240-010-0302-5.
  2. Chen H., Kreider W., Brayman A.A., Bailey M.R., Matula T.J., Blood vessel deformations on microsecond time scales by ultrasonic cavitation, Phys. Rev. Lett., 2011, 106 (3), 034301, DOI: 10.1103/PhysRevLett.106.034301.
  3. Choi J.J., Feshitan J.A., Baseri B., Wang S., Tung Y.S., Borden M.A., Konofagou E.E., Microbubble-size dependence of focused ultrasound-induced blood-brain barrier opening in mice in vivo, IEEE. Trans. Biomed. Eng., 2010, 57 (1), 145–154, DOI: 10.1109/TBME.2009.2034533.
  4. Fan Z., Kumon R.E., Deng C.X., Mechanisms of microbubble- facilitated sonoporation for drug and gene delivery, Ther. Deliv., 2014, 5 (4), 467–486, DOI: 10.4155/tde.14.10.
  5. Guo X., Cai C., Xu G., Yang Y., Tu J., Huang P., Zhang D., Interaction between cavitation microbubble and cell: A simulation of sonoporation using boundary element method (BEM), Ultrason. Sonochem., 2017, 39, 863–871, DOI: 10.1016/j.ultsonch.2017.06.016.
  6. Helfield B., Chen X., Watkins S.C., Villanueva R.S., Biophysical insight into mechanisms of sonoporation, Proc. Natl. Acad. Sci., 2016, 113 (36), 9983–9988, DOI: 10.1073/pnas.1606915113.
  7. Hosseinkhah N., Chen H., Matula T.J., Burns P.N., Hynynen K., Mechanisms of microbubble-vessel interactions and induced stresses: a numerical study, J. Acoust. Soc. Am., 2013, 134 (3), 1875–1885, DOI: 10.1121/1.4817843.
  8. Hu J.W., Qian S.Y., Sun J.N., Lü Y.B., Hu P., Microflowinduced shear stress on biomaterial wall by ultrasoundinduced encapsulated microbubble oscillation, Chin. Phys. B., 2015, 24 (9), 094301–094306, DOI: 10.1088/1674-1056/24/9/094301.
  9. Klotz A.R., Hynynen K., Simulations of the Devin and Zudin modified Rayleigh-Plesset equations to model bubble dynamics in a tube, Technical Acoustics., 2010, 30 (6).
  10. Kobielarz M., Effect of collagen fibres and elastic lamellae content on the mechanical behaviour of abdominal aortic aneurysms, Acta Bioeng. Biomech., 2020, 22 (3), 69–74, DOI: 10.37190/ABB-01580-2020-02.
  11. Koshiyama K., Wada S., Molecular dynamics simulations of pore formation dynamics during the rupture process of a phospholipid bilayer caused by high-speed equibiaxial stretching, J. Biomech. 2011, 44(11), 2053–2058, DOI: 10.1016/j.jbiomech.2011.05.014.
  12. Krasovitski B., Kimmel E., Shear stress induced by a gas bubble pulsating in an ultrasonic field near a wall, IEEE Trans. Ultrason. Ferroelectr. Freq. Control., 2004, 51 (8), 973–979, DOI: 10.1109/TUFFC.2004.1324401.
  13. Li W., Yuan T., Xia-Sheng G., Di X., Dong Z., Microstreaming velocity field and shear stress created by an oscillating encapsulated microbubble near a cell membrane, Chin. Phys. B., 2014, 23, 124302, DOI: 10.1088/1674-1056/23/12/124302.
  14. Lin S.J., Jan K.M., Weinbaum S., Chien S., Transendothelial transport of low density lipoprotein in association with cell mitosis in rat aorta, Arteriosclerosis, 1989, 9 (2), 230–236, DOI: 10.1161/01.ATV.9.2.230.
  15. Man V.H., Truong P.M., Li M.S., Wang J., Van-Oanh N.T., Derreumaux P., Nguyen P.H., Molecular Mechanism of the Cell Membrane Pore Formation Induced by Bubble Stable Cavitation, J. Phys. Chem. B., 2019, 123 (1), 71–78, DOI: 10.1021/acs.jpcb.8b09391.
  16. Miao H., Gracewski S.M., Dalecki D., Ultrasonic excitation of a bubble inside a deformable tube: implications for ultrasonically induced hemorrhage, J. Acoust. Soc. Am., 2008, 124 (4), 2374–2384, DOI: 10.1121/1.2967488.
  17. Miller D.L., Quddus J., Diagnostic ultrasound activation of contrast agent gas bodies induces capillary rupture in mice, Proc. Natl. Acad. Sci. U.S.A., 2000, 97 (18), 10179–10184, DOI: 10.7863/jum.2002.21.12.1435.
  18. Miller M.W., Cell size relations for sonolysis, Ultrasound. Med. Biol., 2004, 30 (10), 1263–1267, DOI: 10.1016/j.ultrasmedbio.2004.07.005.
  19. Olgac U., Kurtcuoglu V., Poulikakos D., Computational modeling of coupled blood-wall mass transport of LDL: effects of local wall shear stress, Am. J. Physiol. Heart. Circ. Physiol., 2008, 294 (2), H909–919, DOI: 10.1152/ajpheart.01082.2007.
  20. Pereno V., Lei J., Carugo D., Stride E., Microstreaming inside Model Cells Induced by Ultrasound and Microbubbles, 2020, 36 (23), 6388–6398, DOI: 10.1021/acs.langmuir.0c00536.
  21. Qin S., Ferrara K.W., The natural frequency of nonlinear oscillation of ultrasound contrast agents in microvessels, Ultrasound Med. Biol., 2007, 33 (7), 1140–1148, DOI: 10.1016/j.ultrasmedbio.2006.12.009.
  22. Ramiar A., Larimi M.M., Ranjbar A.A., Investigation of blood flow rheology using Second-Grade viscoelastic model (Phan– Thien–Tanner) within carotid artery, Acta Bioeng. Biomech., 2017, 19 (3), 27–14. DOI: 10.5277//ABB-00775-2016-05.
  23. Rowe A.J., Finlay H.M., Canham P.B., Collagen biomechanics in cerebral arteries and bifurcations assessed by polarizing microscopy, J. Vasc. Res., 2003, 40 (4), 406–415, DOI: 10.1159/000072831.
  24. Sassaroli E., Hynynen K., Resonance frequency of microbubbles in small blood vessels: a numerical study, Phys. Med. Biol., 2005, 50 (22), 5293–5305, DOI: 10.1088/0031-9155/50/22/006.
  25. Sierra C., Acosta C., Chen C., Wu S.Y., Karakatsani M.E., Bernal M., Konofagou E.E., Lipid microbubbles as a vehicle for targeted drug delivery using focused ultrasound-induced blood-brain barrier opening, J. Cereb. Blood. Flow. Metab., 2017, 37 (4), 1236–1250, DOI: 10.1177/0271678X16652630.
  26. Snowhill P.B., Silver F.H., A Mechanical Model of Porcine Vascular Tissues-Part II: Stress-Strain and Mechanical Properties of Juvenile Porcine Blood Vessels, Cardiovascular Engineering, 2005, 5 (4), 157–169, DOI: 10.1007/s10558-005-9070-1.
  27. Stieger S.M., Caskey C.F., Adamson R.H., Qin S., Curry F.R., Wisner E.R., Ferrara K.W., Enhancement of vascular permeability with low-frequency contrast-enhanced ultrasound in the chorioallantoic membrane model, Radiology, 2007, 243 (1), 112–121, DOI: 10.1148/radiol.2431060167.
  28. Wu J., Theoretical study on shear stress generated by microstreaming surrounding contrast agents attached to living cells, Ultrasound. Med. Biol., 2002, 28 (1), 125–129, DOI: 10.1016/S0301-5629(01)00497-5.
  29. Ye T., Bull J.L. Microbubble expansion in a flexible tube, J. Biomech. Eng., 2006, 128 (4), 554–563, DOI: 10.1115/1.2206200.
  30. Yu H., Chen S., A model to calculate microstreaming-shear stress generated by oscillating microbubbles on the cell membrane in sonoporation, Biomed. Mater. Eng., 2014, 24 (1), 861–868, DOI: 10.3233/BME-130878.
DOI: https://doi.org/10.37190/abb-01749-2020-03 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 95 - 105
Submitted on: Nov 2, 2020
Accepted on: Jan 18, 2021
Published on: Mar 10, 2021
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Wenyi Liu, Jiwen Hu, Yatao Liu, Weirui Lei, Xuekun Chen, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.