References
- B
rinckmann P., Frobin W., Hierholzer E., Stress on the articular surface of the hip joint in healthy adults and persons with idiopathic osteoarthrosis of the hip joint, J. Biomech., 1981, 14, 149–156, DOI: 10.1016/0021-9290(81)90021-x. - C
larke S.G., Phillips A.T., Bull A.M., Evaluating a suitable level of model complexity for finite element analysis of the intact acetabulum, Comput. Methods Biomech. Biomed. Engin., 2013, 16, 717–724, DOI:10.1080/10255842.2011.633906. - D
aniel M., Antolic V., Iglic A., Kralj -Iglic V., Determination of contact hip stress from nomograms based on mathematical model, Med. Eng. Phys., 2001, 23, 347–357, DOI:10.1016/s1350-4533(01)00051-0. - D
ebevec H., Pedersen D.R., Iglič A., Daniel M., One-legged stance as a representative static body position for calculation of hip contact stress distribution in clinical studies, J. Appl. Biomech., 2010, 26, 522–525, DOI:10.1123/jab.26.4.522. - D
ostal W.F., Andrews J.G., A three-dimensional biomechanical model of the hip musculature, J. Biomech., 1981, 14, 803–812, DOI: 10.1016/0021-9290(81)90036-1 13. - D
ragan S.L., Kuropka P., Kulej M., Gabryś P., Nikodem A., Changes in the mechanical properties of femoral cartilage tissue in advanced osteoarthritis, Acta Bioeng. Biomech., 2020, 22, 143–152, DOI: 10.37190/ABB-01463-2019-01. - G
ala J., Clohisy C., Beaulé P.E., Hip dysplasia in the young adult, J. Bone Joint Surg. Am., 2016, 98, 63–73, DOI: 10.2106/JBJS.O.00109. - G
anz R., Leunig M., Leunig -Ganz K., Harris W.H., The etiology of osteoarthritis of the hip: an integrated mechanical concept, Clin. Orthop. Relat. Res., 2008, 466, 264–272, DOI: 10.1007/s11999-007-0060-z. - H
odge W.A., Carlson K.L., Fijan R.S., Burgess R.G., Riley P.O., Harris W.H. et al., Contact pressures from an instrumented hip endo-prosthesis, J. Bone Joint Surg. Am., 1989, 71, 1378–1386. - H
ornová J., Iglič A., Kralj -Iglič V., Pedersen D.R., Daniel M., Effect of patient-specific model scaling on hip joint reaction force in one-legged stance – study of 356 hips, Acta Bioeng. Biomech., 2017, 19, 102–108, DOI: 15.5277/ABB-00839-2017-02. - H
ua X., Li J., Wilcox R.K., Fisher J., Jones A.C., Geometric parameterisation of pelvic bone and cartilage in contact analysis of the natural hip: an initial study, Proc. Inst. Mech. Eng. H, 2015, 229, 570–580, DOI:10.1177/0954411915592656R. - I
glič A., Srakar F., Antolič V., Kralj -Iglič V., Batagelj V., Mathematical analysis of Chiari osteotomy, Acta Orthop. Iugosl., 1990, 20, 35–39. - I
glič A., Srakar F., Antolič V., The influence of the pelvic shape on the biomechanical status of the hip, Clin. Biomech., (Bristol, Avon), 1993, 8, 223–224, DOI:10.1016/0268-0033(93)90019-E. - I
pavec M., Brand R.A., Pedersen D.R., Mavčič B., Kralj -Iglič V., Iglič A., Mathematical modelling of stress in the hip during gait, J. Biomech., 1999, 32, 1229–1235, DOI: 10.1016/s0021-9290(99)00119-0. - K
ocjančič B., Moličnik A., Antolič V., Mavčič B., Kralj -Iglič V., Vengust R., Unfavorable hip stress distribution after Legg–Calvé–Perthes syndrome: A 25-year follow- up of 135 hips, J. Orthop. Res., 2014, 32, 8–16, DOI: 10.1002/jor.22479. - K
olářová K., Vodička T., Bozděch M., Repko M., 3D kinematic analysis of patients’ gait before and after unilateral total hip replacement, Acta Bioeng. Biomech., 2020, 22, 165–171, DOI: 10.37190/ABB-01539-2020-04. - L
iu L., Siebenrock K., Nolte L.P., Zheng G.Y., Biomechanical Optimization-Based Planning of Periacetabular Osteotomy, V: Intelligent orthopaedics: artificial intelligence and smart image-guided technology for orthopaedics, G. Zheng, W. Tian, X. Zhuang (ur.), 2018, 1093, 157–168, DOI: 10.1007/978-981-13-1396-7_13. - M
avčič B., Pompe B., Antolič V., Daniel M., Iglič A., Kralj -Iglič V., Mathematical estimation of stress distribution in normal and dysplastic human hips, J. Orthop. Res., 2002, 20, 1025–1030, DOI: 10.1016/S0736-0266(02)00014-1. - M
oličnik A., Janša J., Kocjančič B., Kralj -Iglič V., Dolinar D., Secondary hip dysplasia increases risk for early coxarthritis after Legg-Calve-Perthes disease. A study of 255 hips, Comput. Methods Biomech. Biomed. Engin., 2019, 22, 1107–1115, DOI: 10.1080/10255842.2019.1634193. - P
ompe B., Daniel M., Sochor M., Vengust R., Kralj -Iglič V., Iglič A., Gradient of contact stress in normal and dysplastic human hips, Med. Eng. Phys., 2003, 25, 379–385, DOI: 10.1016/s1350-4533(03)00014-6. - P
ompe B., Antolič V., Mavčič B., Iglič A., Kralj -Iglič V., Hip joint contact stress as an additional parameter for determining hip dysplasia in adults: comparison with Severins classification, Med. Sci. Monit., 2007, 13, CR215-219. - T
omaževič M., Kaiba T., Kurent U., Trebše R., Cimerman M., Kralj -Iglič V., Hip stress distribution – predictor of dislocation in hip arthroplasties. A retrospective study of 149 arthroplasties, PLoS ONE, 2019, 14, e0225459, DOI: 10.1371/journal.pone.0225459. - V
ukasinović Z., Spasovski D., Kralj -Iglič V., Marinkovic -Eric J., Seslija I., Živkovič Z., Spasovski V., Impact of triple pelvic osteotomy on contact stress pressure distribution in the hip joint, Int. Orthop., 2013, 37, 95–98, DOI: 10.1007/s00264-012-1727-y. - W
iberg G., Studies on dysplastic acetabula and congenital subluxation of the hip joint: with special reference to the complication of osteoarthritis, Acta Chir. Scand., 1939, 83, 5–135. - Y
oussef E.F., Shanb A.A., Ameer M.A., Shanab M.E., Impact of body weight on shifting of foot pressure among adult subjects, Acta Bioeng. Biomech., 2020, 22, 131–137, DOI: 10.37190/ABB-01595-2020-02.