Have a personal or library account? Click to login
Estimation of hydromechanical parameters of limb lymphedematous tissue with the use of chamber tests Cover

Estimation of hydromechanical parameters of limb lymphedematous tissue with the use of chamber tests

Open Access
|Mar 2021

References

  1. Avril S., Evans S., (eds.) Material Parameter Identification and Inverse Problems in Soft Tissue Biomechanics, Springer Int., 2017.
  2. Boyer G., Pailler Matttei C., Molimard J., Pericoi M., Laquieze S., Zahouani H., Non contact method for in vivo assessment of skin mechanical properties for assessing effect of ageing, Medical Eng. Phys., 2012, 34, 172–178.
  3. Casley-Smith J.R., The fine structure and functioning of tissue channels and lymphatics, Lymphology, 1980, 12, 177–183.
  4. Chan W.-H., Huang Y.-L., Lin C., Lin C.-Y., Cheng M.-H., Chu S.-Y., Acoustic radiation force impulse elastography: Tissue stiffness measurement in limb lymphedema, Radiology, 2018, 289, 759–765.
  5. Cowin S,C., Doty S.B., Tissue mechanics, Springer Science, 2007.
  6. Dragan S.Ł., Kuropka P., Kulej M., Gabryś P., Nikodem A., Changes in the mechanical properties of femoral cartilage tissue in advanced osteoarthritis, Acta Bioeng. Biomech., 2020, 22 (1), 143–152.
  7. Feldman J.L., Stout N.L., Wanchai A., Stewart B.R., Cornier J.N., Armer J.M., Intermittent pneumatic compression therapy: A systematic review, Lymphology, 2012, 45, 13–25.
  8. Frauziols F., Molimard J., Navarro L., Badel P., Viallon M., Testa R., Avril S., Prediction of the biomechanical effects of compression therapy by finite element modeling and ultrasound elastography, IEEE Trans. Biomedical Eng., 2015, 62, 1011–1019.
  9. Guyton C., Scheel K., Murphree D., Interstitial fluid pressure: III. Its effect on resistance to tissue fluid mobility, Circulation Research, 1966, 19, 412–419.
  10. Hara H., Mihara M., Comparison of two methods, the sponge method and Young’s modulus, for evaluating stiffness of skin or subcutaneous tissue in the extremities of patients with lymphedema: A pilot study, Lymphat. Res. Biol., 2018, 16, 464–470.
  11. Iivarinen J.T., Korhonen R.K., Julkunen P., Jurvelin J.S., Experimental and computational analysis of soft tissue stiffness in forearm using a manual indentation device, Med. Eng. Phys., 2011, 33, 1245–1253.
  12. Iivarinen J.T., Korhonen R.K., Julkunen P., Jurvelin J.S., Experimental and computational analysis of soft tissue mechanical response under negative pressure forearm, Skin. Res. Techn., 2013, 19, e356–e365.
  13. Kaczmarek M., Olszewski W.L., Nowak J., Zaleska M., The hydromechanics of edema fluid in lymphedematous lower limb during intermittent pneumatic compression, Lymphat. Res. Biol., 2015, 13, 260–267.
  14. Kaczmarek M., Subramaniam R., Neff S., The Hydro-Mechanics of Hydrocephalus: Steady State Solutions for Cylindrical Geometry, Bull Math. Biol., 1997, 59, 295–323.
  15. Li C., Borja R.J., Regueiro R.A., Dynamics of porous media at finite strain, Comput. Methods Appl. Mech. Eng., 2004, 193, 3837–3870.
  16. Loret B., Simoes F.M.F., Biomechanical aspects of soft tissues, CRC Press, 2017.
  17. Olszewski W.L., Jain P., Ambujam G., Zaleska M., Cakala M., Gradalski T., Tissue fluid pressure and flow in the subcutaneous tissue in lymphedema-hints for manual and pneumatic compression, Phlebolymphology, 2010, 17, 144–150.
  18. Pailler-Mattei C., Bec S., Zahouani H., In vivo measurements of the elastic mechanical properties of human skin by indentation tests, Med. Eng. Phys., 2008, 30, 599–606.
  19. Rockson S.G., Lymphedema, Am. J. Med., 2001, 110, 288–295.
  20. Wiig H., Swartz M.A., Interstitial fluid and lymph formation and transport: Physiological regulation and roles in inflammation and cancer, Physiol. Rev., 2012, 92, 1005–1060.
  21. Zaleska M., Olszewski W.L., Durlik M., The effectiveness of intermittent pneumatic compression in long-term therapy of lymphedema of lower limb, Lymphat. Res. Biol., 2014, 12, 103–109.
  22. Zaleska M., Olszewski W.L., Cakała M., Cwikla J., Butlewski T., Intermittent pneumatic compression enhaces formation of edema tissue fluid channels in lymphedema of lower limbs, Lymphat. Res. Biol., 2015, 13, 146–153.
  23. Zaleska M., Olszewski W.L., Durlik M., Kaczmarek M., A Novel Clinical Test for Setting Intermittent Pneumatic Compression Parameters Based on Edema Fluid Hydromechanics in the Lymphedematous Calf, Lymphat. Res. Biol., 2015, 13, 208–214.
  24. Zheng Y.-P., Mak A.F.T., Lue B., Objective assessment of limb tissue elasticity: development of a manual indentation procedure, J. Rehab. Res. and Dev., 1999, 36, 71–85.
  25. Zheng Y.-P., Huang Y.-P., Measurement of soft tissue elasticity in vivo, CRC Press, 2016.
  26. Zingerman K.M., Levin V.A., Some qualitative effects in the exact solutions of the Lame problem for large deformations, J. Appl. Math. Mech., 2012, 76, 205–219.
  27. Żmudzińska M., Inglot M., Zaleska-Dorobisz U., Jankowski L., Świątek-Najwer E., The assessment of the applicability of shear wave elastography in modelling of the mechanical parameters of the liver, Acta Bioeng. Biom., 2018, 20 (4), 59–64.
DOI: https://doi.org/10.37190/abb-01731-2020-02 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 149 - 161
Submitted on: Oct 9, 2020
Accepted on: Jan 21, 2021
Published on: Mar 10, 2021
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Mariusz Kaczmarek, Joanna Nowak, Waldemar L. Olszewski, Marzanna Zaleska, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.