References
- Acemoglu, D., Chernozhukov, V., Werning, I. and Whinston, M. D. (2020). Optimal targeted lockdowns in a multi-group sir model, Working Paper 27102, National Bureau of Economic Research, Cambridge.
- Adiga, A., Dubhashi, D., Lewis, B., Marathe, M., Venkatramanan, S. and Vollikanti, A. (2020). Mathematical models for COVID 19 pandemic: A comparative analysis, Journal of the Indian Institute of Science 100(4): 793–807.
- Aglar, O., Baxter, A., Keskinocak, P., Asplund, J. and Serban, N. (2020). Homebound by COVID 19: The benefits and consequences of non-pharmaceutical intervention strategies, BMC Public Health 21: 655.
- Airey, D. (2015). Developments in understanding tourism policy, Tourism Review 70(4): 246–258.
- Alagar, V.S. and Periyasamy, K. (2011). Specification of Software Systems, Springer, London.
- Alalyani, A. and Saber, S. (2022). Stability analysis and numerical simulations of the fractional COVID-19 pandemic model, International Journal of Nonlinear Sciences and Numerical Simulation 24(3): 1–14.
- Aldao, C., Blasco, D., Espallargas, M.P. and Rubio, S.P. (2021). Modelling the crisis management and impacts of 21st century disruptive events in tourism: The case of the COVID-19 pandemic, Tourism Review 76(4): 929–941.
- Anderson, J.E. (2011). The gravity model, Annual Review of Economics 3(1): 133–160.
- Andersson, C., Fuhrer, C. and Åkesson, J. (2015). Assimulo: A unified framework for ODE solvers, Mathematics and Computers in Simulation 116: 26–43.
- Baggio, R. (2020). The science of complexity in the tourism domain: A perspective article, Tourism Review 75(1): 16–19.
- Becken, S., Mahon, R., Rennie, H.G. and Shakeela, A. (2014). The tourism disaster vulnerability framework: An application to tourism in small island destinations, Natural Hazards 71(1): 955–972.
- Bellman, R.E. (1957). Dynamic Programming, Princeton University Press, Princeton.
- Bhuiyan, M.A., Crovella, T., Paiano, A. and Alves, H. (2021). A review of research on tourism industry, economic crisis and mitigation process of the loss: Analysis on pre, during and post pandemic situation, Sustainability 13(18): 10314.
- Boyd, M., Baker, M.G. and Wilson, N. (2020). Border closure for island nations? Analysis of pandemic and bioweapon-related threats suggests some scenarios warrant drastic action, Australian and New Zealand Journal of Public Health 44(2): 89–91.
- Burns, J., Movsisyan, A., Stratil, J.M., Coenen, M., Emmert-Fees, K.M., Geffert, K., Hoffmann, S., Horstick,O., Laxy, M., Pfadenhauer, L.M., von Philipsborn, P., Sell, K., Voss, S. and Rehfuess, E. (2020). Travel-related control measures to contain the COVID-19 pandemic: A rapid review, Cochrane Database of Systematic Reviews 10(9), DOI: 10.1002/14651858.CD013717.
- Cevik, S. (2022). Going viral: A gravity model of infectious diseases and tourism flows, Open Economies Review 33(1): 141–156.
- Chevalier, J.M., Sy, K.T.L., Girdwood, S.J., Khan, S., Albert, H., Toporowski, A., Hannay, E., Carmona, S. and Nichols, B.E. (2022). Optimal use of COVID-19 AG-RDT screening at border crossings to prevent community transmission: A modeling analysis, PLOS Global Public Health 2(5): e0000086.
- Chinazzi, M., Davis, J.T., Ajelli, M., Gioannini, C., Litvinova, M., Merler, S., Piontti, A.P., Mu, K., Rossi, L. and Sun, K. (2020). The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak, Science 368(6489): 395–400.
- Chui-Hua, L., Gwo-Hshiung, T. and Ming-Huei, L. (2012). Improving tourism policy implementation—The use of hybrid MCDM models, Tourism Management 33(2): 413–426.
- Chumachenko, D., Dobriak, V., Mazorchuk, M., Meniailov, I. and Bazilevych, K. (2018). On agent-based approach to influenza and acute respiratory virus infection simulation, 201814th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, Ukraine, pp. 192–195.
- Cortés, J., El-Labany, S.K., Navarro-Quiles, A., Selim, M.M. and Slama, H. (2020). A comprehensive probabilistic analysis of approximate SIR-type epidemiological models via full randomized discrete-time Markov chain formulation with applications, Mathematical Methods in the Applied Sciences 43(14): 8204–8222.
- Darabi, S.F. and Scoglio, C. (2011). Epidemic spread in human networks, 50th IEEE Conference on Decision and Control/European Control Conference, Orlando, USA, pp. 3008–3013.
- Di Domenico, L., Pullano, G., Sabbatini, C.E., Bo Elle, P.Y. and Colizza, V. (2020). Impact of lockdown on COVID-19 epidemic in Ile-de-France and possible exit strategies, BMC Medicine 18: 240.
- Dickens, B.L., Koo, J.R., Lim, J.T., Sun, H., Clapham, H.E., Wilder-Smith, A. and Cook, A.R. (2020). Strategies at points of entry to reduce importation risk of COVID-19 cases and reopen travel, Journal of Travel Medicine 27(8): taaa141.
- Diseases, T.L.I. (2020). Air travel in the time of COVID-19, The Lancet Infectious Diseases 20(9): 993.
- Dwyer, L. (2015). Computable general equilibrium modelling: An important tool for tourism policy analysis, Tourism and Hospitality Management 21(2): 111–126.
- Getz, D. (1986). Models in tourism planning: Towards integration of theory and practice, Tourism Management 7(1): 21–32.
- Goldenbogen, B., Adler, S.O., Bodeit, O., Wodke, J.A.H., Escalera-Fanjul, X., Korman, A., Krantz, M., Bonn, L., Morán-Torres, R., Haffner, J.E.L., Karnetzki, M., Maintz, I., Mallis, L., Prawitz, H., Segelitz, P.S., Seeger, M., Linding, R. and Klipp, E. (2022). Control of COVID-19 outbreaks under stochastic community dynamics, bimodality, or limited vaccination, Advanced Science 9(23): e2200088.
- Gopalakrishnan, B.N., Peters, R. and Vanzetti, D. (2020). COVID-19 and tourism: Assessing the economic consequences, Report UNCTAD/DITC/INF/2020/3, United Nations Conference on Trade and Development, Geneva.
- Gunn, H. (2001). Spatial and temporal transferability of relationships between travel demand, trip cost and travel time, Transportation Research E: Logistics and Transportation Review 37: 163–189.
- Hall, C.M., Scott, D. and Gössling, S. (2020). Pandemics, transformations and tourism: Be careful what you wish for, Tourism Geographies 22(3): 577–598.
- Hassani, H., Silva, E.S., Antonakakis, N., Filis, G. and Gupta, R. (2017). Forecasting accuracy evaluation of tourist arrivals, Annals of Tourism Research 63(3): 112–127.
- Henseler, M., Maisonnave, H. and Maskaeva, A. (2022). Economic impacts of COVID-19 on the tourism sector in Tanzania, Annals of Tourism Research Empirical Insights 3(1): 100042.
- Ivorra, B., Ferrandez, M.R., Vela-Perez, M. and Ramos, A.M. (2020). Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections: The case of China, Communications in Nonlinear Science and Numerical Simulation 88: 105303.
- Jiehao, C., Jin, X., Daojiong, L., Zhi, Y., Lei, X., Zhenghai, Q., Yuehua, Z., Hua, Z., Ran, J., Pengcheng, L., Xiangshi, W., Yanling, G., Aimei, X., He, T., Hailing, C., Chuning, W., Jingjing, L., Jianshe, W. and Mei, Z. (2020). A case series of children with 2019 novel coronavirus infection: Clinical and epidemiological features, Clinical Infectious Diseases 76(6): 1547–1551.
- Kermack, W.O. and McKendrick, A.G. (1927). A contribution to the mathematical theory of epidemics, Proceedings of the Royal Society 115: 700–721.
- Khalid, U., Okafor, L.E. and Shafiullah, M. (2020). The effects of economic and financial crises on international tourist flows: A cross-country analysis, Journal of Travel Research 59(2): 315–334.
- Kingsley, D. (2015). The Urbanization of the Human Population, Routledge, London.
- Kuo, H., Chen, C., Tseng, W., Ju, L. and Huang, B. (2008). Assessing impacts of SARS and avian flu on international tourism demand to ASIA, Tourism Management 29(5): 917–928.
- Lauer, S.A., Grantz, K.H., Bi, Q., Jones, F.K., Zheng, Q., Meredith, H.R., Azman, A.S., Reich, N.G. and Lessier, J. (2020). The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application, Annals of Internal Medicine 172(9): 577–582.
- Law, R., Li, G., Fong, D.K.C. and Han, X. (2019). Tourism demand forecasting: A deep learning approach, Annals of Tourism Research 75: 410–423.
- Lazebnik, T. and Alexi, A. (2022). Comparison of pandemic intervention policies in several building types using heterogeneous population model, Communications in Nonlinear Science and Numerical Simulation 107(4): 106176.
- Lazebnik, T. and Blumrosen, G. (2022). Advanced multi-mutation with intervention policies pandemic model, IEEE Access 10: 22769–22781.
- Lazebnik, T. and Bunimovich-Mendrazitsky, S. (2021). The signature features of COVID-19 pandemic in a hybrid mathematical model—Implications for optimal work-school lockdown policy, Advanced Theory and Simulations 4(5): 2000298.
- Lazebnik, T., Shami, L. and Bunimovich-Mendrazitsky, S. (2021a). Pandemic management by a spatio-temporal mathematical model, International Journal of Nonlinear Sciences and Numerical Simulation 24(6): 2307–2324.
- Lazebnik, T., Shami, L. and Bunimovich-Mendrazitsky, S. (2021b). Spatio-temporal influence of non-pharmaceutical interventions policies on pandemic dynamics and the economy: The case of COVID-19, Economic Research-Ekonomska Istraživanja 35(1): 1833–1861.
- Li, X., Gong, J., Gao, B. and Yuan, P. (2021). Impacts of COVID-19 on tourists’ destination preferences: Evidence from China, Annals of Tourism Research 90: 103258.
- Lindstrom, M.J. and Bates, D.M. (1988). Newton–Raphson and em algorithms for linear mixed-effects models for repeated-measures data, Journal of the American Statistical Association 83(404): 1014–1022.
- Linka, K., Peirlinck, M., Sahli Costabal, F. and Kuhl, E. (2020). Outbreak dynamics of COVID-19 in Europe and the effect of travel restrictions, Computer Methods in Biomechanics and Biomedical Engineering 23(11): 710–717.
- Liu, A., Vici, L., Ramos, V., Giannoni, S. and Blake, A. (2021). Visitor arrivals forecasts amid COVID-19: A perspective from the Europe team, Annals of Tourism Research 88: 103182.
- Liu, L., Miller, H.J. and Scheff, J. (2020). The impacts of COVID-19 pandemic on public transit demand in the united states, PLOS ONE 15(11): 1–22.
- Macal, C. M. (2010). To agent-based simulation from system dynamics, Proceedings of the 2010 Winter Simulation Conference, Baltimore, USA, pp. 371–382.
- Masud, S., Torraca, V. and Meijer, A.H. (2017). Modeling infectious diseases in the context of a developing immune system, in K.C. Sadler (Ed.), Zebrafish at the Interface of Development and Disease Research, Academic Press, Cambridge, pp. 277–329.
- Nagayuki, Y., Ishii, S. and Doya, K. (2000). Multi-agent reinforcement learning: An approach based on the other agent’s internal model, Proceedings of the 4th International Conference on MultiAgent Systems, Boston, USA, pp. 215–221.
- Nesteruk, L. (2020). Statistics-based predictions of coronavirus epidemic spreading in mainland China, Innovative Biosystems and Bioengineering 8: 13–18.
- Ntounis, N., Parker, C., Skinner, H., Steadman, C. and Warnby, G. (2021). Tourism and hospitality industry resilience during the COVID-19 pandemic: Evidence from England, Current Issues in Tourism 1: 46–59.
- Pappas, N. (2021). COVID19: Holiday intentions during a pandemic, Tourism Management 84: 104287.
- Peer, S., Koopmans, C. and Verhoef, E.T. (2012). Prediction of travel time variability for cost-benefit analysis, Transportation Research A: Policy and Practice 46(1): 79–90.
- Pham, T.D., Dwyer, L., Su, J. and Ngo, T. (2021). COVID-19 impacts of inbound tourism on Australian economy, Annals of Tourism Research 88: 103179.
- Pindyck, R.S. (2020). COVID-19 and the welfare effects of reducing contagion, Working Paper 27121, National Bureau of Economic Research, Cambridge.
- Polyzos, S., Samitas, A. and Spyridou, A.E. (2020). Tourism demand and the COVID-19 pandemic: An LSTM approach, Tourism Recreation Research 46: 175–187.
- Privault, N. (2018). Understanding Markov Chains, Springer, Singapore.
- Ram, V. and Schaposnik, L.P. (2021). A modified age-structured SIR model for COVID-19 type viruses, Scientific Reports 11: 15194.
- Roberty, N.C. and de Araujo, L.S.F. (2021). SIR model parameters estimation with COVID-19 data, Journal of Advances in Mathematics and Computer Science 36(3): 97–117.
- Ronald, L. (2011). The outlook for population growth, Science 333(6042): 569–573.
- Rosselló, J., Becken, S. and Santana-Gallego, M. (2020). The effects of natural disasters on international tourism: A global analysis, Tourism Management 79: 104080.
- Selbst, A.D. and Barocas, S. (2018). The intuitive appeal of explainable machines, Fordham Law Review 87(3): 1085–1140.
- Shami, L. and Lazebnik, T. (2022). Financing and managing epidemiological-economic crises: Are we ready to another outbreak?, Journal of Policy Modeling 45(1): 74–89.
- She, J., Liu, L. and Liu, W. (2020). COVID-19 epidemic: Disease characteristics in children, Journal of Medical Virology 92(7): 747–754.
- Sun, S., Li, J., Guo, J.-E. and Wang, S. (2021). Tourism demand forecasting: An ensemble deep learning approach, Tourism Economics 28(8): 2021–2049.
- Tan, M. (1993). Multi-agent reinforcement learning: Independent vs. cooperative agents, In Proceedings of the 10th International Conference on Machine Learning, Amherst, USA, pp. 330–337.
- Teixeira, J.P. and Fernandes, P.O. (2012). Tourism time series forecast-different ANN architectures with time index input, Procedia Technology 5: 445–454.
- Tinbergen, J. (1962). Shaping the World Economy; Suggestions for an international Economic Policy, The Twentieth Century Fund, New York.
- Tuite, A.R., Fisman, D.N. and Greer, A.L. (2020). Mathematical modelling of COVID-19 transmission and mitigation strategies in the population of Ontario, Canada, Canadian Medical Association Journal 192: E497–E505.
- UNWTO (2022). UNWTO World Tourism Barometer and Statistical Annex, January 2022 20(1), DOI: 10.18111/wtobarometereng.2022.20.1.1, (English version).
- UNWTO (2021). UNWTO World Tourism Barometer and Statistical Annex, May 2021 19(3), DOI: 10.18111/wtobarometereng.2021.19.1.3, (English version).
- Van Truong, N. and Shimizu, T. (2017). The effect of transportation on tourism promotion: Literature review on application of the computable general equilibrium (CGE) model, Transportation Research Procedia 25: 3096–3115.
- Viguerie, A., Lorenzo, G., Auricchio, F., Baroli, D., Hughes, T.J.R., Patton, A., Reali, A., Yankeelov, T.E. and Veneziani, A. (2020). Simulating the spread of COVID-19 via a spatially-resolved susceptible-exposed-infected-recovered-deceased (SEIRD) model with heterogeneous diffusion, Applied Mathematics Letters 111: 106617.
- Virlogeux, V., Li, M., Tsang, T.K., Feng, L., Fang, V.J., Jiang, H., Wu, P., Zheng, J., Lau, E.H.Y., Cao, Y., Qin, Y., Liao, Q., Yu, H. and Cowling, B.J. (2015). Estimating the distribution of the incubation periods of human avian influenza A(H7N9) virus infections, American Journal of Epidemiology 182(8): 723–729.
- Watkin, C.J.C.H. and Dayan, P. (1989). Learning With Delayed Rewards, PhD thesis, King’s College, Cambridge.
- Watkin, C.J.C.H. and Dayan, P. (1992). Technical note: Q-learning, Machine Learning 8: 279–292.
- White, J.W., Rassweiler, A., Samhouri, J.F., Stier, A.C. and White, C. (2014). Ecologists should not use statistical significance tests to interpret simulation model results, Oikos 123(4): 385–388.
- Wilder-Smith, A. (2006). The severe acute respiratory syndrome: Impact on travel and tourism, Travel Medicine and Infectious Disease 4(2): 53–60.
- Wiratsudakul, A., Suparit, P. and Modchang, C. (2018). Dynamics of Zika virus outbreaks: An overview of mathematical modeling approaches, PeerJ 6: e4526.
- Wut, T.M., Xu, J.B. and Wong, S. (2021). Crisis management research (1985–2020) in the hospitality and tourism industry: A review and research agenda, Tourism Management 85: 104307.
- Zhao, S., Stone, L., Gao, D., Musa, S.S., Chong, M.K.C., He, D. and Wang, M.H. (2020). Imitation dynamics in the mitigation of the novel coronavirus disease (COVID-19) outbreak in Wuhan, China, from 2019 to 2020, Annals of Transnational Medicine 8(7): 448.
- Zhu, Z., Weber, E., Strohsal, T. and Serhan, D. (2021). Sustainable border control policy in the COVID-19 pandemic: A math modeling study, Travel Medicine and Infectious Disease 41: 102044.