Have a personal or library account? Click to login

Robust Flat Filtering Control of a Two Degrees of Freedom Helicopter Subject to Tail Rotor Disturbances

Open Access
|Dec 2023

References

  1. Ahi, B. and Haeri, M. (2018). Linear active disturbance rejection control from the practical aspects, IEEE/ASME Transactions on Mechatronics 23(6): 2909–2919.
  2. Ahmed, Q., Bhatti, A., Iqbal, S. and Kazmi, I. (2010). 2-Sliding mode based robust control for 2-DOF helicopter, 11th International Workshop on Variable Structure Systems (VSS), Mexico City, Mexico, pp. 481–486.
  3. Bortoff, S.A. (1999). The University of Toronto RC helicopter: A test bed for nonlinear control, Proceedings of the 1999 IEEE International Conference on Control Applications, Kohala Coast, USA, Vol. 1, pp. 333–338.
  4. Budiyono, A. and Wibowo, S. (2007). Optimal tracking controller design for a small scale helicopter, Journal of Bionic Engineering 4(4): 271–280.
  5. Butt, S.S. and Aschemann, H. (2015). Multi-variable integral sliding mode control of a two degrees of freedom helicopter, IFAC-PapersOnLine 48(1): 802–807.
  6. Cerezo-Pacheco, A.D., Pérez-Velasco, C.A., Lozano-Hernandez, Y., Rodriguez-Cortes, H. and Sánchez-Meza, V.G. (2021). Integration of x-plane and Matlab for modeling and simulation of a tiltrotor UAV, 2021 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE), Cuernavaca, Mexico, pp. 39–44.
  7. Fareh, R., Khadraoui, S., Abdallah, M.Y., Baziyad, M. and Bettayeb, M. (2021). Active disturbance rejection control for robotic systems: A review, Mechatronics 80: 102671.
  8. Ferdaus, M.M., Anavatti, S.G., Pratama, M. and Garratt, M.A. (2020). Towards the use of fuzzy logic systems in rotary wing unmanned aerial vehicle: A review, Artificial Intelligence Review 53(1): 257–290.
  9. Fletcher, T.M. and Brown, R.E. (2008). Main rotor-tail rotor interaction and its implications for helicopter directional control, Journal of the American Helicopter Society 53(2): 125–138.
  10. Fliess, M. and Join, C. (2013). Model-free control, International Journal of Control 86(12): 2228–2252.
  11. Fliess, M., Lévine, J., Martin, P. and Rouchon, P. (1995). Flatness and defect of non-linear systems: Introductory theory and examples, International Journal of Control 61(6): 1327–1361.
  12. Fliess, M., Marquez, R., Delaleau, E. and Sira-Ramirez, H. (2002). Correcteurs proportionnels-intégraux genéralisés, ESAIM: Control, Optimisation and Calculus of Variations 7: 23–41.
  13. Garcia, R. and Valavanis, K.P. (2008). The implementation of an autonomous helicopter testbed, in P. Valavanis et al. (Eds), Unmanned Aircraft Systems, Springer, Dordrecht, pp. 423–454.
  14. Han, J. (2009). From PiD to active disturbance rejection control, IEEE Transactions on Industrial Electronics 56(3): 900–906.
  15. He, M., He, J. and Scherer, S. (2021). Model-based real-time robust controller for a small helicopter, Mechanical Systems and Signal Processing 146: 1-16, Article no. 107022.
  16. Kantue, P. and Pedro, J.O. (2022). Integrated fault-tolerant control of a quadcopter UAV with incipient actuator faults, International Journal of Applied Mathematics and Computer Science 32(4): 601–617, DOI: 10.34768/amcs-2022-0042.
  17. Kasac, J., Kotarski, D. and Piljek, P. (2019). Frequency-shifting-based algebraic approach to stable on-line parameter identification and state estimation of multirotor UAV, Asian Journal of Control 21(4): 1619–1629.
  18. Kumar, E.V., Raaja, G.S. and Jerome, J. (2016). Adaptive PSO for optimal LQR tracking control of 2 DOF laboratory helicopter, Applied Soft Computing 41: 77–90.
  19. Kutay, A.T., Calise, A.J., Idan, M. and Hovakimyan, N. (2005). Experimental results on adaptive output feedback control using a laboratory model helicopter, IEEE Transactions on Control Systems Technology 13(2): 196–202.
  20. Leishman, J.G. (2007). The Helicopter, College Park Press, College Park, MD.
  21. Liu, C. (2022). Stabilization control of quadrotor helicopter through matching solution by controlled Lagrangian method, Asian Journal of Control 24(4): 1885–1894.
  22. Lozano-Hernandez, Y. and Gutierrez-Frias, O. (2016). Design and control of a four-rotary-wing aircraft, IEEE Latin America Transactions 14(11): 4433–4438.
  23. Lynn, R.R., Robinson, F., Batra, N. and Duhon, J. (1970). Tail rotor design. Part I: Aerodynamics, Journal of the American Helicopter Society 15(4): 2–15.
  24. Madoński, R. and Herman, P. (2015). Survey on methods of increasing the efficiency of extended state disturbance observers, ISA Transactions 56: 18-27.
  25. Nilsen, S. (2017). Modelling and Control of Two Degrees of Freedom Helicopter Model, MS thesis, Høgskolen i Sørøst-Norge, Notodden.
  26. Nonami, K., Kendoul, F., Suzuki, S., Wang, W. and Nakazawa, D. (2010). Autonomous Flying Robots: Unmanned Aerial Vehicles and Micro Aerial Vehicles, Springer, Tokyo.
  27. Ordaz, P., Alazki, H., Sánchez, B. and Ordaz-Oliver, M. (2023). On the finite time stabilization via robust control for uncertain disturbed systems, International Journal of Applied Mathematics and Computer Science 33(1): 71–82, DOI: 10.34768/amcs-2023-0006.
  28. Pereira das Neves, G. and Augusto Angélico, B. (2022). Model-free control of mechatronic systems based on algebraic estimation, Asian Journal of Control 24(4): 1575–1584.
  29. Pizetta, I.H.B., Brandao, A.S. and Sarcinelli-Filho, M. (2016). A hardware-in-the-loop platform for rotary-wing unmanned aerial vehicles, Journal of Intelligent & Robotic Systems 84(1): 725–743.
  30. Raffo, G.V., Ortega, M.G. and Rubio, F.R. (2015). Robust nonlinear control for path tracking of a quad-rotor helicopter, Asian Journal of Control 17(1): 142–156.
  31. Ramírez-Neria, M., Gao, Z., Sira-Ramirez, H., Garrido-Moctezuma, R. and Luviano-Juarez, A. (2021). On the tracking of fast trajectories of a 3 DOF torsional plant: A flatness based ADRC approach, Asian Journal of Control 23(3): 1367–1379.
  32. Ramírez-Neria, M., Sira-Ramírez, H., Garrido-Moctezuma, R. and Luviano-Juárez, A. (2014). Linear active disturbance rejection control of underactuated systems: The case of the furuta pendulum, ISA Transactions 53(4): 920–928.
  33. Ramírez-Neria, M., Sira-Ramírez, H., Garrido-Moctezuma, R. and Luviano-Juairez, A. (2016). On the linear control of underactuated nonlinear systems via tangent flatness and active disturbance rejection control: The case of the ball and beam system, Journal of Dynamic Systems, Measurement, and Control 138(10): 104501.
  34. Rojas-Cubides, H., Cortés-Romero, J., Coral-Enriquez, H. and Rojas-Cubides, H. (2019). Sliding mode control assisted by GPI observers for tracking tasks of a nonlinear multivariable twin-rotor aerodynamical system, Control Engineering Practice 88: 1–15.
  35. Ross, J., Seto, M. and Johnston, C. (2022). Autonomous landing of rotary wing unmanned aerial vehicles on underway ships in a sea state, Journal of Intelligent & Robotic Systems 104(1): 1–9.
  36. Rysdyk, R.T. and Calise, A.J. (1999). Adaptive model inversion flight control for tilt-rotor aircraft, Journal of Guidance, Control, and Dynamics 22(3): 402–407.
  37. Sánchez-Meza, V. G., Lozano-Hernández, Y. and Gutiérrez-Frías, O.O. (2020). Modeling and control of a two DOF helicopter with tail rotor disturbances, International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE), pp. 79–84.
  38. Schäferlein, U., Keßller, M. and Krämer, E. (2018). Aeroelastic simulation of the tail shake phenomenon, Journal of the American Helicopter Society 63(3): 1–17.
  39. Siciliano, B., Sciavicco, L., Villani, L. and Oriolo, G. (2010). Robotics: Modelling, Planning and Control, London.
  40. Sira-Ramírez, H. (2018). From flatness, GPI observers, GPI control and flat filters to observer-based ADRC, Control Theory and Technology 16(4): 249–260.
  41. Sira-Ramírez, H., Luviano-Juárez, A., Ramírez-Neria, M. and Zurita-Bustamante, E.W. (2017). Active Disturbance Rejection Control of Dynamic Systems: A Flatness Based Approach, Butterworth-Heinemann, Kidlington.
  42. Sira-Ramírez, H., Zurita-Bustamante, E.W. and Huang, C. (2019). Equivalence among flat filters, dirty derivative-based PID controllers, ADRC, and integral reconstructor-based sliding mode control, IEEE Transactions on Control Systems Technology 28(5): 1696–1710.
  43. Spong, M., Hutchinson, S. and Vidyasagar, M. (2006). Robot Modeling and Control, Wiley, Hoboken.
  44. Ta, D.A., Fantoni, I. and Lozano, R. (2012). Modeling and control of a tilt tri-rotor airplane, 2012 American Control Conference (ACC), Montreal, Canada, pp. 131–136.
  45. Tang, P., Wang, F. and Dai, Y. (2019). Controller design for different electric tail rotor operating modes in helicopters, International Journal of Pattern Recognition and Artificial Intelligence 33(08): 1959022.
  46. Tanner, O. and Geering, H.P. (2003). Two-degree-of-freedom robust controller for an autonomous helicopter, Proceedings of the American Control Conference, Denver, USA, Vol. 2, pp. 993–998.
  47. Tavoosi, J. (2021). Hybrid intelligent adaptive controller for tiltrotor UAV, International Journal of Intelligent Unmanned Systems 9(4): 256–273.
  48. Velagic, J. and Osmic, N. (2010). Design and implementation of fuzzy logic controllers for helicopter elevation and azimuth controls, Conference on Control and Fault-Tolerant Systems (SysTol), Nice, France, pp. 311–316.
  49. Vitzilaios, N.I. and Tsourveloudis, N.C. (2009). An experimental test bed for small unmanned helicopters, Journal of Intelligent and Robotic Systems 54(5): 769–794.
  50. Wang, B., Shen, Y. and Zhang, Y. (2020). Active fault-tolerant control for a quadrotor helicopter against actuator faults and model uncertainties, Aerospace Science and Technology 99: 105745.
  51. Zeng, Y., Xu, J. and Zhang, R. (2019). Energy minimization for wireless communication with rotary-wing UAV, IEEE Transactions on Wireless Communications 18(4): 2329–2345.
  52. Zhan, C. and Huang, R. (2020). Energy efficient adaptive video streaming with rotary-wing UAV, IEEE Transactions on Vehicular Technology 69(7): 8040–8044.
  53. Zhu, B. and Huo, W. (2013). Robust nonlinear control for a model-scaled helicopter with parameter uncertainties, Nonlinear Dynamics 73(1): 1139–1154.
DOI: https://doi.org/10.34768/amcs-2023-0038 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 521 - 535
Submitted on: Oct 2, 2022
Accepted on: May 22, 2023
Published on: Dec 21, 2023
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Victor-Gabriel Sánchez-Meza, Yair Lozano-Hernández, Octavio Gutiérrez-Frías, Norma Lozada-Castillo, Alberto Luviano-Juárez, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.