Have a personal or library account? Click to login
Computing a Mechanism for a Bayesian and Partially Observable Markov Approach Cover

Computing a Mechanism for a Bayesian and Partially Observable Markov Approach

Open Access
|Sep 2023

References

  1. Asian, S. and Nie, X. (2014). Coordination in supply chains with uncertain demand and disruption risks: Existence, analysis, and insights, IEEE Transactions on Systems, Man, and Cybernetics: Systems 44(9): 1139–1154.
  2. Athey, S. and Segal, I. (2013). An efficient dynamic mechanism, Econometrica 81(6): 2463–2485.
  3. Atkeson, A. and Lucas, R. (1992). On efficient distribution with private information, Review of Economic Studies 59(3): 427–453.
  4. Battaglini, M. (2005). Long-term contracting with Markovian consumers, American Economic Review 95(3): 637–658.
  5. Bergemann, D. and Said, M. (2011). Dynamic auctions: A survey, in J.J. Cochran et al. (Eds), Wiley Encyclopedia of Operations Research and Management Science, John Wiley, Hoboken, pp. 1511–1522.
  6. Board, S. (2007). Selling options, Journal of Economic Theory 136(1): 324–340.
  7. Board, S. and Skrzypacz, A. (2016,). Revenue management with forward-looking buyers, Journal of Political Economy 124(4): 1046–1087.
  8. Clempner, J.B. and Poznyak, A.S. (2015). Computing the strong Nash equilibrium for Markov chains games, Applied Mathematics and Computation 265(15): 911–927.
  9. Clempner, J.B. and Poznyak, A.S. (2016). Convergence analysis for pure and stationary strategies in repeated potential games: Nash, Lyapunov and correlated equilibria, Expert Systems with Applications 46(C): 474–484.
  10. Clempner, J.B. and Poznyak, A.S. (2018a). A Tikhonov regularization parameter approach for solving Lagrange constrained optimization problems, Engineering Optimization 50(11): 1996–2012.
  11. Clempner, J.B. and Poznyak, A.S. (2018b). A Tikhonov regularized penalty function approach for solving polylinear programming problems, Journal of Computational and Applied Mathematics 328: 267–286.
  12. Courty, P. and Li, H. (2000). Sequential screening, Review of Economic Studies 67(4): 697–717.
  13. Eső, P. and Szentes, B. (2007). Optimal information disclosure in auctions and the handicap auction, Review of Economic Studies 74(3): 705–731.
  14. Gallien, J. (2006). Dynamic mechanism design for online commerce, Operations Research 54(2): 291–310.
  15. Garg, D. and Narahari, Y. (2008). Mechanism design for single leader Stackelberg problems and application to procurement auction design, IEEE Transactions on Automation Science and Engineering 5(3): 377–393.
  16. Gershkov, A. and Moldovanu, B. (2009). Dynamic revenue maximization with heterogenous objects: A mechanism design approach, American Economic Journal: Microeconomics 1(2): 168–198.
  17. Hartline, J.D. and Lucier, B. (2015). Non-optimal mechanism design, American Economic Review 105(10): 3102–3124.
  18. Jackson, M. (2003). Mechanism theory, in U. Derigs (Ed.), Optimization and Operations Research: An Insight into the Encyclopedia of Life Support Systems, EOLSS Publishers, Oxford, pp. 1–46.
  19. Kakade, S., Lobel, I. and Nazerzadeh, H. (2013). Optimal dynamic mechanism design and the virtual-pivot mechanism, Operations Research 61(4): 837–854.
  20. Khoury, B., Nejjari, F. and Puig, V. (2022). Reliability-aware zonotopic tube-based model predictive control of a drinking water network, International Journal of Applied Mathematics and Computer Science 32(2): 197–211, DOI: 10.34768/amcs-2022-0015.
  21. Maskin, E. and Riley, J. (1984). Monopoly with incomplete information, Rand Journal of Economics 15(2): 171–196.
  22. Myerson, R. (1981). Optimal auction design, Mathematics of Operations Research 6(1): 58–73.
  23. Myerson, R.B. (1983). Mechanism design by an informed principal, Econometrica 51(6): 1767–1797.
  24. Nocedal, J. and Wright, S. (2006). Numerical Optimization, Springer, New York.
  25. Pavan, A., Segal, I. and Toikka, J. (2014). Dynamic mechanism design: A Myersonian approach, Econometrica 82(2): 601–653.
  26. Zeifman, A., Satin, Y., Kryukova, A., Razumchik, R., Kiseleva, K. and Shilova, G. (2020). On three methods for bounding the rate of convergence for some continuous-time Markov chains, International Journal of Applied Mathematics and Computer Science 30(2): 251–266, DOI: 10.34768/amcs-2020-0020.
DOI: https://doi.org/10.34768/amcs-2023-0034 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 463 - 478
Submitted on: Jul 11, 2022
Accepted on: Feb 27, 2023
Published on: Sep 21, 2023
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Julio B. Clempner, Alexander S. Poznyak, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.