Have a personal or library account? Click to login
Optimal Control Problems without Terminal Constraints: The Turnpike Property with Interior Decay Cover

Optimal Control Problems without Terminal Constraints: The Turnpike Property with Interior Decay

By: Martin Gugat and  Martin Lazar  
Open Access
|Sep 2023

References

  1. Dacorogna, B. (2008). Direct Methods in the Calculus of Variations, 2nd Edn, Springer, Berlin.
  2. Damm, T., Grüne, L., Stieler, M. and Worthmann, K. (2014). An exponential turnpike theorem for dissipative discrete time optimal control problems, SIAM Journal on Control Optimization 52(3): 1935–1957.
  3. Dorfman, R., Samuelson, P.A. and Solow, R.M. (1958). Linear Programming and Economic Analysis, McGraw-Hill, New York.
  4. Faulwasser, T., Flaßkamp, K., Ober-Blöbaum, S., Schaller, M. and Worthmann, K. (2022). Manifold turnpikes, trims, and symmetries, Mathematics of Control, Signals, and Systems 34: 759–788.
  5. Faulwasser, T., Korda, M., Jones, C.N. and Bonvin, D. (2017). On turnpike and dissipativity properties of continuous-time optimal control problems, Automatica 81: 297–304.
  6. Grüne, L. and Guglielmi, R. (2018). Turnpike properties and strict dissipativity for discrete time linear quadratic optimal control problems, SIAM Journal on Control Optimization 56(2): 1282–1302.
  7. Grüne, L. and Müller, M.A. (2016). On the relation between strict dissipativity and turnpike properties, Systems& Control Letters 90: 45–53.
  8. Grüne, L., Schaller, M. and Schiela, A. (2020). Exponential sensitivity and turnpike analysis for linear quadratic optimal control of general evolution equations, Journal of Differential Equations 268(12): 7311–7341.
  9. Gugat, M. (2021). On the turnpike property with interior decay for optimal control problems, Mathematics of Control Signals Systems 33: 237–258.
  10. Gugat, M. (2022). Optimal boundary control of the wave equation: The finite-time turnpike phenomenon, Mathematical Reports 24(74)(1–2): 179–186.
  11. Gugat, M. and Hante, F.M. (2019). On the turnpike phenomenon for optimal boundary control problems with hyperbolic systems, SIAM Journal on Control Optimization 57(1): 264–289.
  12. Gugat, M. and Lazar, M. (2023). Turnpike properties for partially uncontrollable systems, Automatica 149: 110844.
  13. Gugat, M. and Leugering, G. (2017). Time delay in optimal control loops for wave equations, ESAIM: Control Optimisation and Calculus of Variations 23(1): 13–37.
  14. Hernández-Santamaría, V., Lazar, M. and Zuazua, E. (2019). Greedy optimal control for elliptic problems and its application to turnpike problems, Numerische Mathematik 141(2): 455–493.
  15. Mammadov, M.A. (2014). Turnpike theorem for an infinite horizon optimal control problem with time delay, SIAM Journal on Control Optimization 52(1): 420–438.
  16. Porretta, A. and Zuazua, E. (2013). Long time versus steady state optimal control, SIAM Journal on Control Optimization 51(6): 4242–4273.
  17. Rabah, R., Sklyar, G. and Barkhayev, P. (2017). Exact null controllability, complete stabilizability and continuous final observability of neutral type systems, International Journal of Applied Mathematics and Computer Science 27(3): 489–499, DOI: 10.1515/amcs-2017-0034.
  18. Sakamoto, N. and Zuazua, E. (2021). The turnpike property in nonlinear optimal control—A geometric approach, Auto-matica 134: 109939.
  19. Sontag, E.D. (1991). Kalman’s controllability rank condition: From linear to nonlinear, in A.C. Antoulas (Ed.) Mathematical System Theory, Springer, Berlin, pp. 453–462.
  20. Trélat, E. and Zhang, C. (2018). Integral and measure-turnpike properties for infinite-dimensional optimal control systems, Mathematics of Control, Signals and Systems 30, Article no. 3.
  21. Trélat, E., Zhang, C. and Zuazua, E. (2018). Steady-state and periodic exponential turnpike property for optimal control problems in Hilbert spaces, SIAM Journal on Control Optimization 56(2): 1222–1252.
  22. Trélat, E. and Zuazua, E. (2015). The turnpike property in finite-dimensional nonlinear optimal control, Journal of Differential Equations 258(1): 81–114.
  23. Tucsnak, M. and Weiss, G. (2009). Observation and Control for Operator Semigroups, Birkhäuser, Basel.
  24. Zaslavski, A.J. (2006). Turnpike Properties in the Calculus of Variations and Optimal Control, Springer, New York.
  25. Zaslavski, A.J. (2014). Turnpike Phenomenon and Infinite Horizon Optimal Control, Springer, Cham.
DOI: https://doi.org/10.34768/amcs-2023-0031 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 429 - 438
Submitted on: Dec 8, 2022
|
Accepted on: Apr 11, 2023
|
Published on: Sep 21, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Martin Gugat, Martin Lazar, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.