Have a personal or library account? Click to login
A Method of Lower and Upper Solutions for Control Problems and Application to a Model of Bone Marrow Transplantation Cover

A Method of Lower and Upper Solutions for Control Problems and Application to a Model of Bone Marrow Transplantation

Open Access
|Sep 2023

References

  1. Barbu, V. (2016). Differential Equations, Springer, Cham.
  2. Coron, J.-M. (2007). Control and Nonlinearity, Mathematical Surveys and Monographs, Vol. 136, American Mathematical Society, Providence.
  3. DeConde, R., Kim, P.S., Levy, D. and Lee, P.P. (2005). Post-transplantation dynamics of the immune response to chronic myelogenous leukemia, Journal of Theoretical Biology 236(1): 39–59.
  4. Foley, C. and Mackey, M.C. (2009). Dynamic hematological disease: A review, Journal of Mathematical Biology 58(1): 285–322.
  5. Haplea, I.Ş., Parajdi, L.G. and Precup, R. (2021). On the controllability of a system modeling cell dynamics related to leukemia, Symmetry 13(10): 1867.
  6. Kelley, C.T. (1995). Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia.
  7. Kim, P.S., Lee, P.P. and Levy, D. (2007). Mini-transplants for chronic myelogenous leukemia: A modeling perspective, in I. Queinnec (Ed.), Biology and Control Theory: Current Challenges, Lecture Notes in Control and Information Sciences, Vol. 357, Springer, Berlin, pp. 3–20.
  8. Langtangen, H.P. and Mardal, K.A. (2019). Introduction to Numerical Methods for Variational Problems, Springer, Cham.
  9. Parajdi, L.G. (2020). Stability of the equilibria of a dynamic system modeling stem cell transplantation, Ricerche di Matematica 69(2): 579–601.
  10. Parajdi, L.G., Patrulescu, F.-O., Precup, R. and Haplea, I.Ş. (2023). Two numerical methods for solving a nonlinear system of integral equations of mixed Volterra–Fredholm type arising from a control problem related to leukemia, Journal of Applied Analysis & Computation, DOI: 10.11948/20220197, (online first).
  11. Precup, R. (2002). Methods in Nonlinear Integral Equations, Kluwer Academic Publishers, Dordrecht.
  12. Precup, R. (2022). On some applications of the controllability principle for fixed point equations, Results in Applied Mathematics 13: 100236.
  13. Precup, R., Dima, D., Tomuleasa, C., Şerban, M.-A. and Parajdi, L.-G. (2018). Theoretical models of hematopoietic cell dynamics related to bone marrow transplantation, in Atta-ur-Rahman and S. Anjum (Eds.), Frontiers in Stem Cell and Regenerative Medicine Research,Vol. 8,Bentham Science Publishers, Sharjah, pp. 202–241.
  14. Precup, R., Şerban, M.-A. and Trif, D. (2013). Asymptotic stability for a model of cell dynamics after allogeneic bone marrow transplantation, Nonlinear Dynamics and Systems Theory 13(1): 79–92.
  15. Precup, R., Şerban, M.-A., Trif, D. and Cucuianu, A. (2012). A planning algorithm for correction therapies after allogeneic stem cell transplantation, Journal of Mathematical Modelling and Algorithms 11(3): 309–323.
  16. Precup, R., Trif, D., Şerban, M.-A. and Cucuianu, A. (2010). A mathematical approach to cell dynamics before and after allogeneic bone marrow transplantation, Annals of the Tiberiu Popoviciu Seminar of Functional Equations, Approximation and Convexity 8: 167–175.
  17. Rahmani Doust, M.H. (2015). The efficiency of harvested factor: Lotka–Volterra predator-prey model, Caspian Journal of Mathematical Sciences 4(1): 51–59.
DOI: https://doi.org/10.34768/amcs-2023-0029 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 409 - 418
Submitted on: Nov 6, 2022
Accepted on: Apr 12, 2023
Published on: Sep 21, 2023
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Lorand Gabriel Parajdi, Radu Precup, Ioan Ştefan Haplea, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.